por maria cleide » Dom Mai 08, 2011 17:14
Simplificando a expressão

, obtemos qual resultado?
Consigui resolver dando valores a x, y e z:
Sendo:

respectivamente e obtive como resultado

que é o mesmo que:

Desenvolvi assim:

-
maria cleide
- Usuário Parceiro

-
- Mensagens: 54
- Registrado em: Dom Mai 08, 2011 12:57
- Formação Escolar: ENSINO FUNDAMENTAL I
- Andamento: cursando
por Molina » Dom Mai 08, 2011 17:49
Boa tarde, Maria.
Lembre-se que:

e que

Com isso temos que:

Agora precisamos lembrar a propriedade que trata de diferença de quadrados:

![\frac{(x+y)^2-z^2}{x^2-(y-z)^2}=\frac{[(x+y)-z][(x+y)+z]}{[x-(y-z)][x+(y-z)]}=\frac{x+y+z}{x-y+z} \frac{(x+y)^2-z^2}{x^2-(y-z)^2}=\frac{[(x+y)-z][(x+y)+z]}{[x-(y-z)][x+(y-z)]}=\frac{x+y+z}{x-y+z}](/latexrender/pictures/2e672ab5637cb571a63dbd44cd614f17.png)

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Polinômios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Simplificação de expressão
por Cleyson007 » Qui Jan 14, 2010 22:13
- 3 Respostas
- 13050 Exibições
- Última mensagem por MarceloFantini

Sáb Jan 16, 2010 19:12
Estatística
-
- Simplificação de expressão.
por Sobreira » Qui Ago 22, 2013 01:53
- 2 Respostas
- 1358 Exibições
- Última mensagem por Sobreira

Qui Ago 22, 2013 18:12
Aritmética
-
- Simplificação(UNIFOR)-A expressão
por wgf » Seg Mai 27, 2013 20:26
- 4 Respostas
- 9170 Exibições
- Última mensagem por DanielFerreira

Ter Mai 01, 2018 22:54
Álgebra Elementar
-
- Regras de simplificação de expressão
por xdleoskk8 » Sáb Fev 15, 2014 12:29
- 3 Respostas
- 3388 Exibições
- Última mensagem por DanielFerreira

Sáb Fev 15, 2014 14:17
Equações
-
- simplificação de expressão entre conjuntos
por jojo » Ter Abr 06, 2010 16:49
- 1 Respostas
- 3908 Exibições
- Última mensagem por Lucio Carvalho

Ter Abr 06, 2010 21:26
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.