• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Polinômios

Polinômios

Mensagempor Rose » Seg Set 08, 2008 22:07

OLá!!


Não estou sabendo como fazer este problema sobre polinômios. Gostaria que vocês me ajudassem.

Questão: Determine o polinômio com coeficientes inteiros que tenha raiz de 3 + raiz 2 como uma de suas raizes.

Obrigada
Rose
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Qui Mai 15, 2008 14:13
Área/Curso: Estudante
Andamento: cursando

Re: Polinômios

Mensagempor admin » Ter Set 09, 2008 21:33

Olá Rose!

Pelo teorema da decomposição, todo polinômio P de grau n (n \geq 1)

P = a_n x^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \cdots + a_1x + a_0

pode ser decomposto de maneira única em n fatores do primeiro grau.
Desta forma, podemos reescrevê-lo assim:

P = a_n(x-r_1)(x-r_2)(x-r_3)\cdots(x-r_n)

onde r_1, r_2, r_3, \cdots, r_n são as raízes de P.

Sendo assim, se \sqrt{3}+\sqrt{2} é raiz, então:

x-\left( \sqrt{3}+\sqrt{2} \right) divide o polinômio.

Em outras palavras, P é múltiplo de x-\left( \sqrt{3}+\sqrt{2} \right).


Como sabemos apenas esta raiz, uma alternativa é supor a_n = 1 e avaliarmos o produto:

P' = \left[ x-\left( \sqrt{3}+\sqrt{2} \right) \right] \cdot  \left[ x+\left( \sqrt{3}+\sqrt{2} \right) \right]

sendo o outro fator o conjugado, pois estamos em busca de coeficientes inteiros.


Faça a distributiva e caso não obtenha coeficientes inteiros, multiplique novamente por um fator "conjugado" ao polinômio atual, visando eliminar as raízes dos coeficientes.

Bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: Polinômios

Mensagempor Rose » Qua Set 10, 2008 11:50

OLá!!


Obrigadaaa!!!

Depois desta explicação, consegui entender o teorema da decomposição e sua utilidade. Resolvi e cheguei a um polinômio de grau 4. Valeu genteee!!!!
Rose
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Qui Mai 15, 2008 14:13
Área/Curso: Estudante
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}