Bom dia! Começei a pouco estudar para um concurso, e surgiu um problema, que tive dificuldades para resolver (é simples pra muitos, mas estou meio enferrujado), consegui chegar ao resultado correto.
A cada 200m de distância da superficie terrestre, a temperatura cai 1 grau. Se na superficie a esta a +20 graus, qual a temperatura a 10km de distância?
Igualando as medidas... 10km x 1000 = 10000m
200m --------------1º
10000m---------------x
200x = 10000
x = 10000/200 = 50
ou seja, em 10000m vai cair a temperatura em 50º
+20 -50 = -30
Eu lembro na faculdade, que o professor para esses problemas montava uma tabela e chegava a uma formula, mas eu não lembro. Sabem que tipo de formula é? se sim poderiam me explicar? e me dizer se essa maneira que fiz foi a melhor forma de resolver?
Obrigado!

e variação de temperatura =
. Lembrando que uma função do primeiro grau é toda função do tipo
, onde
e
são números reais e
. 


e
. Colocando esses valores em
, teremos a seguinte lei:
. Para comprovar a veracidade substitua procure ver qual é o valor de y quando o de for 10 Km.
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.