• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema - Estudando P/ Concurso

Problema - Estudando P/ Concurso

Mensagempor m3oliveira » Qua Abr 13, 2011 10:24

Bom dia! Começei a pouco estudar para um concurso, e surgiu um problema, que tive dificuldades para resolver (é simples pra muitos, mas estou meio enferrujado), consegui chegar ao resultado correto.

A cada 200m de distância da superficie terrestre, a temperatura cai 1 grau. Se na superficie a esta a +20 graus, qual a temperatura a 10km de distância?

Igualando as medidas... 10km x 1000 = 10000m


200m --------------1º
10000m---------------x


200x = 10000

x = 10000/200 = 50

ou seja, em 10000m vai cair a temperatura em 50º

+20 -50 = -30

Eu lembro na faculdade, que o professor para esses problemas montava uma tabela e chegava a uma formula, mas eu não lembro. Sabem que tipo de formula é? se sim poderiam me explicar? e me dizer se essa maneira que fiz foi a melhor forma de resolver?

Obrigado!
m3oliveira
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Abr 13, 2011 09:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Processamento de Dados
Andamento: formado

Re: Problema - Estudando P/ Concurso

Mensagempor Abelardo » Qua Abr 13, 2011 14:15

Veja que essa ''variação de temperatura'' está de acordo com a definição de uma função do primeiro grau. A cada 200m de distância da superfície a temperatura diminui 1 grau. Podemos excrever o seguinte: Variação de espaço = \Delta s e variação de temperatura = \Delta t. Lembrando que uma função do primeiro grau é toda função do tipo f(x)=ax + b, onde a e b são números reais e a\neq 0.

\Delta t \rightarrow \Delta s
20 º \rightarrow 0 m 

19 º \rightarrow 200 m  

18 º \rightarrow 400 m  

17 º \rightarrow  600 m

...  \rightarrow ...

...  \rightarrow ...

...  \rightarrow ...



Teremos uma função onde o a temperatura varia em função do espaço. Fazendo um gráfico cartesiano onde as ordenadas ( Y ) representam os valores de t e as abscissas ( X ) representam os valores de s, teremos que a temperatura inicial é de 20 graus a 0 m de distância, então qual será a temperatura a 10.000 m de distância? Procurei saber a lei de formação que rege essa função, com a ajuda do gráfico você só precisa de dois pontos quaisquer para encontrá-la. Preciso então encontrar os valores de a e b para ter a lei de correspondência( f(x)=ax +b ).

Veja que a 0m de distância temos uma diminuição de 0º , a 200 m de distância teremos uma diminuição de 1º. Montando o sistema teremos:

20 = a.0 + b 

19 = a.200 + b

Resolvendo o sistema você vai ver que a= -\frac{1}{200} e b= 20. Colocando esses valores em f(x)= ax + b, teremos a seguinte lei: f(x)= -\frac{1}{200} + 20. Para comprovar a veracidade substitua procure ver qual é o valor de y quando o de for 10 Km.
Avatar do usuário
Abelardo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 159
Registrado em: Qui Mar 03, 2011 01:45
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}