• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Números Complexos na forma trigonométrica

Números Complexos na forma trigonométrica

Mensagempor geriane » Seg Jul 05, 2010 12:16

Calcule o módulo do complexo {(\frac{4}{1-i\sqrt[2]{3}}})^{-8}.
Obrigada!
geriane
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Sáb Abr 03, 2010 10:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura
Andamento: formado

Re: Números Complexos na forma trigonométrica

Mensagempor Tom » Seg Jul 05, 2010 12:57

(\dfrac{4}{1-i\sqrt{3}})^{-8}=(\dfrac{1-i\sqrt{3}}{4})^8=\dfrac{(1-i\sqrt{3})^8}{4^8}

Analisemos : z=1-i\sqrt{3}:

Usando as definições: |z|=2 e o argumento de z é \theta=\dfrac{5\pi}{6}

Assim, escrevendo z na forma polar: z=2(cos\dfrac{5\pi}{6}+i.sen\dfrac{5\pi}{6}) e usando a propriedade de potenciação para complexos:

z^8=2^8(cos\dfrac{8.5\pi}{6}+i.sen\dfrac{8.5\pi}{6})=2^8(cos\dfrac{20\pi}{3}+i.sen\dfrac{20\pi}{3}) e , com a redução do arco ao primeiro quadrente,
z^8=2^8(cos\dfrac{2\pi}{3}+i.sen\dfrac{2\pi}{3})


Voltando a expressão: \dfrac{(1-i\sqrt{3})^8}{4^8}=\dfrac{2^8(cos\dfrac{2\pi}{3}+i.sen\dfrac{2\pi}{3})}{2^{16}}=\dfrac{(cos\dfrac{2\pi}{3}+i.sen\dfrac{2\pi}{3})}{2^8}=\dfrac{\frac{-1}{2}+\frac{\sqrt{3}i}{2}}{2^8}

Finalmente, o valor da expressão é: \dfrac{-1+\sqrt{3}i}{512}
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado

Re: Números Complexos na forma trigonométrica

Mensagempor geriane » Seg Jul 05, 2010 13:34

Tom, fico muito agradecida só que o resultado final do exercício é 1/256 e não estou conseguindo chegar a esse resultado eu fiz dessa maneira que você fez só q não consigo chegar ao resultado.
geriane
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Sáb Abr 03, 2010 10:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura
Andamento: formado

Re: Números Complexos na forma trigonométrica

Mensagempor Elcioschin » Seg Jul 05, 2010 16:10

Tom/Geriane

A solução do Tom, esta perfeita do ponto de vista do encaminhamento. Faltou apenas:

a) Corrigir um pequeno erro de cálculo do argumento
b) Calcular o módulo no final

z = 1 - i*V3 ----> z = 2*(1/2 - i*V3/2) ----> ângulo do 4º quadrante ---> z = 2*[cos(5pi/3) + isen(5pi/3)]

Assim ----> teta = 5pi/3

z^8 = (2^8)*[cos(8*5pi/3) + i*sen(8*5pi/3)] ----> z = 2*[cos(40*pi/3) + i*sen(40*pi/3)]

Reduzindo ao 1º quadrante ---> z = (2~8)*[cos(4pi/3) +i*sen(4pi/3)]

z = (2^8)*[- 1/2 - i*V3/2)

Neste caso o valor da expressão é (- 1 - V3*i)/512

|z|² = (1/512)²*[(-1)² + (-V3)²] ---> |z|² = (1/512)²*(1 + 3) ----> |z|² = 4/512² ----> |z|² = 2²/512²

|z = 2/512 ----> |z| = 1/256
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Números Complexos na forma trigonométrica

Mensagempor geriane » Seg Jul 05, 2010 17:00

Obrigada Tom e Elcio pela atenção !!!!!!!!!
geriane
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Sáb Abr 03, 2010 10:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura
Andamento: formado

Re: Números Complexos na forma trigonométrica

Mensagempor Tom » Seg Jul 05, 2010 23:04

Desculpe, acho que copiei errado quando passei a questão pro caderno. ;)
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?