• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[determinar números complexos]

[determinar números complexos]

Mensagempor JKS » Qui Jun 20, 2013 01:32

Não consigo.. se alguém puder me ajudar ..

Determine dois números complexos z1 e z2 tais que \left[z1 \right]=\left|z2 \right|=1 e z1+z2=1.
JKS
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Ago 01, 2012 13:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [determinar números complexos]

Mensagempor fraol » Dom Jul 21, 2013 22:35

Boa noite,

Vamos considerar os dois números complexos:
z_1 = x_1 + y_1i e z_2 = x_2 + y_2i

De \left|z_1 \right| = 1 \Rightarrow x_1^2 + y_1^2 = 1 \Leftrightarrow y_1 = \sqrt[2]{1-x_1^2}.

De z_1 + z_2 = 1 \Rightarrow x_1 + x_2 = 1 \Leftrightarrow x_2 = 1-x_1 e y_1 + y_2 = 0 \Leftrightarrow y_2 = - y_1 = - \sqrt[2]{1-x_1^2}.

De \left|z_2 \right| = 1 \Rightarrow x_2^2 + y_2^2 = 1 \Leftrightarrow (1-x_1)^2 + \left(- \sqrt[2]{1-x_1^2} \right)^2 = 1 então x_1 = \frac{1}{2}, y_1 = \sqrt[2]{\frac{3}{4}}, x_2 = \frac{1}{2}, y_1 = -  \sqrt[2]{\frac{3}{4}}.

Agora basta substituir esses valores nas expressões de z_1 e z_2 para completar.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.