• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida - potenciação

Dúvida - potenciação

Mensagempor Danilo » Qua Ago 29, 2012 10:27

Qual é a melhor maneira de resolver uma potência do tipo {i}^{n}? É que vejo muitas pessoas dividindo a potência por 4 sendo o resto elevado ao número i. Por que isso afinal? Quais são as melhores maneiras de resolver isso? Eu sempre quebrei a potência dividindo por algum número qualquer e usei a propriedade {\left({i}^{n} \right)}^{s} mas vi que existem métodos muito mais simples. Gostaria que alguém me explicasse quais são os métodos e de onde vem os mesmos. Grato !
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Dúvida - potenciação

Mensagempor e8group » Qua Ago 29, 2012 11:06

Desculpe ,mas não conseguir oq vc realmente quer . Seria isto ?


i^n =  i (i^{n-1} ) = \frac{i^{n+1}}{i}   = i^{n/4} \cdot  i^{3n/4} . Teria como postar um exercício para estudarmos seu expoente .

Na minha opinião não devemos limitar os modos de lidar com o expoente ,devemos adaptar todos eles a uma situação que nos leve a uma solução .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Dúvida - potenciação

Mensagempor LuizAquino » Qua Ago 29, 2012 11:34

Danilo escreveu:Qual é a melhor maneira de resolver uma potência do tipo {i}^{n}? É que vejo muitas pessoas dividindo a potência por 4 sendo o resto elevado ao número i. Por que isso afinal? Quais são as melhores maneiras de resolver isso? Eu sempre quebrei a potência dividindo por algum número qualquer e usei a propriedade {\left({i}^{n} \right)}^{s} mas vi que existem métodos muito mais simples. Gostaria que alguém me explicasse quais são os métodos e de onde vem os mesmos.


Usar esse método do resto da divisão por 4 é uma boa estratégia.

Ela é a estratégia padrão para esse tipo de exercício, mas é claro que você pode usar outras.

Para entendê-la, primeiro lembre-se que i^4 = 1.

Em seguida, considere um número natural n. Dividindo n por 4 obtemos um quociente q e um resto r (ou seja, n = 4q + r). Desse modo, temos que:

i^{n} = i^{4q+r} =\left(i^4\right)^q\cdot i^r = 1^q \cdot i^r = i^r

Resumindo: calcular i^n é o mesmo que calcular i^r, onde r é resto da divisão do natural n por 4.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Dúvida - potenciação

Mensagempor Danilo » Qua Ago 29, 2012 11:37

santhiago escreveu:Desculpe ,mas não conseguir oq vc realmente quer . Seria isto ?


i^n =  i (i^{n-1} ) = \frac{i^{n+1}}{i}   = i^{n/4} \cdot  i^{3n/4} . Teria como postar um exercício para estudarmos seu expoente .

Na minha opinião não devemos limitar os modos de lidar com o expoente ,devemos adaptar todos eles a uma situação que nos leve a uma solução .



Então, é tipo: Como resolver {i}^{2578}{i}^{2578} ? Um dos métodos que eu descobri recentemente, seria dividir 2578 por 4 e resto desta divisão, vira o expoente de i. Minha pergunta é: Quais são as maneiras de resolver, por exemplo, {i}^{2578}{i}^{2578} ? E por que quando efetuamos a divisão por 4, elevar o resto da divisão a i? É isso!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Dúvida - potenciação

Mensagempor Danilo » Qua Ago 29, 2012 11:41

LuizAquino escreveu:
Danilo escreveu:Qual é a melhor maneira de resolver uma potência do tipo {i}^{n}? É que vejo muitas pessoas dividindo a potência por 4 sendo o resto elevado ao número i. Por que isso afinal? Quais são as melhores maneiras de resolver isso? Eu sempre quebrei a potência dividindo por algum número qualquer e usei a propriedade {\left({i}^{n} \right)}^{s} mas vi que existem métodos muito mais simples. Gostaria que alguém me explicasse quais são os métodos e de onde vem os mesmos.


Usar esse método do resto da divisão por 4 é uma boa estratégia.

Ela é a estratégia padrão para esse tipo de exercício, mas é claro que você pode usar outras.

Para entendê-la, primeiro lembre-se que i^4 = 1.

Em seguida, considere um número natural n. Dividindo n por 4 obtemos um quociente q e um resto r (ou seja, n = 4q + r). Desse modo, temos que:

i^{n} = i^{4q+r} =\left(i^4\right)^q\cdot i^r = 1^q \cdot i^r = i^r

Resumindo: calcular i^n é o mesmo que calcular i^r, onde r é resto da divisão do natural n por 4.


Perfeito !!!!! Obrigado!!! Professor, poderia me passar um outro método qualquer?
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Dúvida - potenciação

Mensagempor e8group » Qua Ago 29, 2012 12:29

Danilo , muito interessante este método . A parti de hoje fui apresentado ao mesmo . Abraços .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Dúvida - potenciação

Mensagempor LuizAquino » Qua Ago 29, 2012 18:15

Danilo escreveu:Professor, poderia me passar um outro método qualquer?


Uma outra maneira de fazer seria usando a Fórmula de Moivre. Vide a página abaixo:

Fórmulas de Moivre - Brasil Escola
http://www.brasilescola.com/matematica/ ... moivre.htm

Danilo escreveu:Então, é tipo: Como resolver {i}^{2578}{i}^{2578} ? Um dos métodos que eu descobri recentemente, seria dividir 2578 por 4 e resto desta divisão, vira o expoente de i. Minha pergunta é: Quais são as maneiras de resolver, por exemplo, {i}^{2578}{i}^{2578} ? E por que quando efetuamos a divisão por 4, elevar o resto da divisão a i? É isso!


No caso específico desse exercício, seria mais simples usar a seguinte estratégia:

{i}^{2.578}{i}^{2.578} = \left(i^2\right)^{2.578} = \left(-1\right)^{2.578} = 1
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.