• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Numeros Complexos] : No circulo trigonometrico?

[Numeros Complexos] : No circulo trigonometrico?

Mensagempor Priscilamoraes307 » Sex Jun 01, 2012 20:35

Determine \beta para que o SISTEMA tenha solução única:

\left|Z \right| = 4

\left|Z - i \right| = \beta


Só consegui fazer que \left|Z \right| = x² + y² = 16 raio = 4

é uma equação da circunferência com raio = 4 ? Tenho que achar o afixo? como faço para achar o angulo?


Obrigada!!!!!!!
Priscilamoraes307
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Jun 01, 2012 20:15
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Numeros Complexos] : No circulo trigonometrico?

Mensagempor Russman » Sáb Jun 02, 2012 03:15

Sim, o módulo de z ser 4 implica que você está considerando o conjunto de números complexos que distam 4 unidades da origem. Ou seja, uma circunferência de raio 4.

Agora, a segunda informação diz que se você sutrái i de z ele deve calcular um módulo beta. Vamos ver oq isso significa:

z=x+yi\Rightarrow \left | z \right |=x^{2}+y^{2} = 4

z-i = x + (y-1)i\Rightarrow \left | z-i \right |=x^{2}+(y-1)^{2}=x^{2}+ y^{2}-2y-1 = \beta

Da 1° equação, sabemos que x² + y² = 4. Apliquemos então na segunda equação esse resultado.

x^{2}+ y^{2}-2y-1 = 4-2y-1=3-2y=\beta \Rightarrow y=\frac{3-\beta }{2}

O que me vem a mente é que para z ser complexo então y dever ser não nulo. Assim temos

\beta\neq 3.

"Solução única" seria selecionar somente 1 complezo de módulo 4. Não sei...
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Numeros Complexos] : No circulo trigonometrico?

Mensagempor MarceloFantini » Sáb Jun 02, 2012 12:45

Você quer duas circunferências tangentes. Uma tem centro na origem e raio 4 enquanto que a outra tem centro em i e raio a determinar. Pela configuração do problema, vemos que a solução é \beta = 3. Mas a circunferência pode tangenciar inferiormente apenas, logo \beta = 5 também.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Numeros Complexos] : No circulo trigonometrico?

Mensagempor Russman » Sáb Jun 02, 2012 19:54

Áh, sim! Eu escrevi errado a segunda equação. O correto seria


z-i = x + (y-1)i\Rightarrow \left | z-i \right |=\sqrt{x^{2}+(y-1)^{2}}=\sqrt{x^{2}+ y^{2}-2y+1} = \beta \Rightarrow x^{2}+ y^{2}-2y+1 = \beta ^{2}

Fazendo o mesmo processo que anteriormente, obtemos

17-2y = \beta ^{2} \Rightarrow y=\frac{17-\beta ^{2}}{2}.

Agora aplicando este resultado na 1° equação, faz-se uma euqção em x

x^{2}=\frac{-225}{4}+\frac{17}{2}\beta ^{2}-\frac{\beta^{4}}{4}

que tem duas soluções: x=\left\{\begin{matrix}
\sqrt{\frac{-225}{4}+\frac{17}{2}\beta ^{2}-\frac{\beta^{4}}{4}}\\ 
-\sqrt{\frac{-225}{4}+\frac{17}{2}\beta ^{2}-\frac{\beta^{4}}{4}}
\end{matrix}\right.

de onde existira resposta única para o problema quando forem iguais. Logo,

\sqrt{\frac{-225}{4}+\frac{17}{2}\beta ^{2}-\frac{\beta^{4}}{4}} = -\sqrt{\frac{-225}{4}+\frac{17}{2}\beta ^{2}-\frac{\beta^{4}}{4}}\Rightarrow \frac{-225}{4}+\frac{17}{2}\beta ^{2}-\frac{\beta^{4}}{4} = 0\Rightarrow \left\{\begin{matrix}
\beta =5\\ 
\beta =3
\end{matrix}\right..

Portanto, a solução pra o seu problema é z = -4i, se \beta = 5 e z=4i se \beta = 3.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}