por lucas_metal » Qua Abr 04, 2012 17:07
To com um problema aqui, vou fazer prova e não consegui entender essa **** de plano de gauss ainda, veja o enunciado:
Represente no plano de Gauss os pontos M,N,P, e Q, respectivas imagens dos números Z1+ (-2,1), Z2= (0,-1), Z1+Z2 e Z1*Z2
Dai eu pensei que fosse tipo assim:
Pega o Z1 e o Z2 soma e multiplica e os resultados eu coloco no plano de gauss (sendo que os números imaginarios no eixo Im(z) e os reais no Re(z))
Mas não é assim pois na resposta do livro ta assim:
Vou tentar explicar como esta no plano:
(1,2) ponto denominado "Q" obs: o número 1 no eixo Re(z) e o 2 no Im(z)
(-2,1) Em cima do -2 tá a letra P e o ponto entre eles se chama M
(-1) Só tem esse -1 marcado no eixo Im(z) que se chama N
E agora pessoal alguém sabe como faz esse negócio, pois vou fazer prova e to entendo muita pouca coisa da matéria, e vcs sabem como eh, se não pega bem no começo depois no final do ano é mais dificil ainda....
Se alguém puder me ajudar eu agradeço MUITO MUITO MUITO!
-
lucas_metal
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Abr 04, 2012 17:02
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 3
- Andamento: cursando
por fraol » Qua Abr 04, 2012 19:58
Colocar os pontos no plano complexo, não deve oferecer dificuldades pois é apenas questão de cruzar os x e y correspondentes.
Se você tem os complexos

e

, então

( basta somar as coordenadas correspondentes ).

( Aqui é uma multiplicação entre complexos que fica assim

Então é só terminar as contas e plotar os pontos no plano. Quer tentar?
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Números Complexos] Área da região do plano complexo.
por brunocav » Qua Mai 29, 2013 15:34
- 0 Respostas
- 1907 Exibições
- Última mensagem por brunocav

Qua Mai 29, 2013 15:34
Números Complexos
-
- Números complexos módulo de dois números complexos important
por elisamaria » Qui Jun 11, 2015 16:56
- 1 Respostas
- 15983 Exibições
- Última mensagem por nakagumahissao

Qui Jun 11, 2015 19:20
Números Complexos
-
- [UESC 2009 Plano de Argand-Gauss]
por Leocondeuba » Qui Jul 25, 2013 12:32
- 1 Respostas
- 1861 Exibições
- Última mensagem por MateusL

Qui Jul 25, 2013 18:29
Números Complexos
-
- [Plano Argand-Gauss] UESB 2011.2
por Leocondeuba » Ter Nov 05, 2013 22:06
- 0 Respostas
- 1665 Exibições
- Última mensagem por Leocondeuba

Ter Nov 05, 2013 22:06
Números Complexos
-
- Representação de Complexos no plano
por Jonatan » Seg Ago 02, 2010 21:54
- 1 Respostas
- 1857 Exibições
- Última mensagem por MarceloFantini

Seg Ago 09, 2010 06:05
Números Complexos
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.