por Bio Molina » Sáb Jun 13, 2009 18:37
Dada a equação abaixo determine
a) a origem é um equilibrio do sistema? e estavel?
b)se a origem for um equilibrio determine, se existir, os outros pontos de equilibrio do sistema esboçando o grafico de f(x) e g(x) para 0<x<30
c) analiticamente, determine o valor minimo de r e o valor maximo de k para os quais e possivel termos tres equilibrios não triviais?
d) determine a estabilidade dos equilibrios
e) esboçe as curvas soluções, e o que ocorre com o inseto quando t-infinito
X’=x[f(x)-g(x)]
F(x)=r(1-x/K)
G(x)=x/(1+x2)
--------------------------------------------------------------------------------------------------------
No g'(x) consegui esboçar a equação das raizes
G’(x)= (1+x2) . 1-x(2x) g”(x)= (1+x2)2 .(-2x)-(1-x2)2x
(1+x2)2 (1+x2)2
= 1+x2-2x2 G”(1) < 0
(1+x2)2 max.local
g’(1) = 0
= 1-x2
(1+x2)2
G’(x) +0 ? x= +/- 1
-------------------------------------------------------------------------------------------
F(x) = x’=x[f(x)-g(x)]
Eq.= f(x) = 0
X=0
ou
F(x) =g(x)
Dai pra frente embananou a cabeça
-
Bio Molina
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sáb Jun 13, 2009 13:58
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Biologia
- Andamento: cursando
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Ajuda na equação do 1 grau (segunda parte)
por zekinha » Seg Jun 27, 2011 16:30
- 13 Respostas
- 7412 Exibições
- Última mensagem por zekinha

Ter Jun 28, 2011 12:44
Álgebra Elementar
-
- Equação Diferencial.
por Higor » Seg Fev 21, 2011 13:12
- 4 Respostas
- 11993 Exibições
- Última mensagem por Higor

Seg Fev 21, 2011 14:46
Cálculo: Limites, Derivadas e Integrais
-
- Equaçao diferencial
por romulo39 » Dom Abr 03, 2011 20:58
- 1 Respostas
- 3812 Exibições
- Última mensagem por LuizAquino

Seg Abr 04, 2011 14:39
Cálculo: Limites, Derivadas e Integrais
-
- Equação diferencial
por jacquelline » Qui Mai 17, 2012 11:04
- 2 Respostas
- 1948 Exibições
- Última mensagem por jacquelline

Sáb Mai 19, 2012 20:37
Cálculo: Limites, Derivadas e Integrais
-
- Equação diferencial - 1
por Cleyson007 » Qua Nov 07, 2012 21:09
- 8 Respostas
- 3596 Exibições
- Última mensagem por MarceloFantini

Qui Nov 08, 2012 17:05
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.