• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Numeros complexos

Numeros complexos

Mensagempor Angelica Abdalla » Qua Jul 06, 2011 23:12

olá estou tentando resolver esta questão "Para z=?3/2+1/2 i, calcule 1+z+z^2+z^3+?+z^50", resolvi até z^12 e sei que nesta fecha o ciclo trigonométrico, como faço para resolver???? Alguém pode me auxiliar.
Angelica Abdalla
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qua Jun 29, 2011 22:48
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: Numeros complexos

Mensagempor Molina » Qui Jul 07, 2011 00:20

Boa noite, Angelica.

Você percebeu então que

1 = z^{13} = z^{26} = ...

z = z^{14} = z^{27} = ...

z^{2} = z^{15} = z^{28} = ...

...

Perceba que você pode agrupar esses 13 números que você percebeu que fazem parte do ciclo, não há necessidades de calcular todos depois. Some estes do ciclo e multiplique por 4, pois assim você está somando 4*13=52 números. Agora reflita, já que você só tem 51 números para somar... Qual número foi somado uma vez a mais?


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Numeros complexos

Mensagempor MarceloFantini » Qui Jul 07, 2011 00:43

Outro jeito é perceba que isto é uma PG, com primeiro termo 1 e razão z. Logo, basta calcular a soma com n=51:

S_{50} = \frac{1(z^{51} -1)}{z-1}

Agora é simplificar isso.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Numeros complexos

Mensagempor FilipeCaceres » Qui Jul 07, 2011 10:52

MarceloFantini escreveu:... calcular a soma com n=50:

S_{50} = \frac{1(z^{50} -1)}{z-1}

Agora é simplificar isso.


Acho que cometeu um pequeno equivoco no valor de "n", observe que temos 51 termos e não 50, sendo assim devemos usar n=51.

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Numeros complexos

Mensagempor MarceloFantini » Qui Jul 07, 2011 14:14

Perdão pelo erro. Arrumado.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Numeros complexos

Mensagempor vivi » Qui Jul 07, 2011 22:53

Por acaso essa soma fica mais ou menos assim?

4(?3/2-1/2 i)+4(1/2+?3/2)+2i
vivi
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Jun 26, 2011 19:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Numeros complexos

Mensagempor vanessafey » Dom Jul 10, 2011 13:50

Também estou com dúvidas nesta questão... e fiz de maneira diferente...

z^1=z^5=z^9=z^46=z

z^2=z^6=z^10=z^47=-1

z^3=z^7=z^11=z^48=-z

z^4=z^8=z^12=z^49=1

z^5=z^9=z^13=z^50=z

Logo,

1+z+z^2+z^3+...+z^50=1+20(z)+20(-1)+20(-z)+20(z)=1+20z-20-20z+20z=1

Seria isso???
vanessafey
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Sex Jun 24, 2011 13:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59