por Fabricio dalla » Seg Abr 04, 2011 12:54
(UERJ)Considere o numero complexo
![z=\frac{1-i}{1+i\sqrt[2]{3}} z=\frac{1-i}{1+i\sqrt[2]{3}}](/latexrender/pictures/4a06af6a167580f6d28c4dfdee28c026.png)
Ao escrever z na forma trigonometrica,os valores do modulo e do argumento serão,respectivamente,de:
obs(eu tenho q fazer o conjugado e racionalizar quantas vezes pra depois descobri

etc..? nunca racionalizei tanto na minha vida)
resp:
![\frac{\sqrt[2]{2}}{2} e \frac{17\pi}{12} \frac{\sqrt[2]{2}}{2} e \frac{17\pi}{12}](/latexrender/pictures/db654c603b4434c07877df27b8df3c7c.png)
-
Fabricio dalla
- Colaborador Voluntário

-
- Mensagens: 111
- Registrado em: Sáb Fev 26, 2011 17:50
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Elcioschin » Seg Abr 04, 2011 13:41
Basta racionalizar UMA única vez
z = (1 - i)/(1 + i*V3)
z = (1 - i)*(1 - i*V3)/(1 + i*V3)*(1 - i*V3)
z = (1 - i*V3 - i - i²*V3)/[1² - (i*V3)²]
z = [(1 + V3) - i*(1 + V3)]/4
z = (1 + V3)/4 - i*(1 + V3)/4
|z|² = [(1 + V3)/4]² + [(1 + V3)/4]² ----> |z|² = (4 + 2*V3)/16 + ( 4 - 2*V3)/16 ----> |2|² = 1/2 ----> |z| = V2/2
tgT = - [(1 + V3)/4]/[(1 + V3)/4] -----> tgT = -1 ----> 4º quadrante ----> T = 7*pi/4 ----> Gabarito errado
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por Fabricio dalla » Seg Abr 04, 2011 14:00
sao cinco alternativas das cinco somente 3 tem modulo
![\frac{\sqrt[2]{2}}{2} \frac{\sqrt[2]{2}}{2}](/latexrender/pictures/087ef0498ec0056debd92518bfa3944e.png)
que é o correto
e os argumentos dessas 3 sao
c 25pi/12
d 17pi/12
e 25pi/12
-
Fabricio dalla
- Colaborador Voluntário

-
- Mensagens: 111
- Registrado em: Sáb Fev 26, 2011 17:50
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Fabricio dalla » Seg Abr 04, 2011 14:45
Elcioschin eu devo ta errado mas a parte do numerador da fraçao ou melhor a parte real num é 1-
![\sqrt[2]{3} \sqrt[2]{3}](/latexrender/pictures/77529b271d4ed2ab8ca1f0755594aa28.png)
? ai no caso como a parte real e negativa multiplica por -1 e troca-se as ordens da parte real e imaginaria
-
Fabricio dalla
- Colaborador Voluntário

-
- Mensagens: 111
- Registrado em: Sáb Fev 26, 2011 17:50
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Questão de Concurso-Número Complexos
por Pri Ferreira » Qua Mar 21, 2012 13:44
- 1 Respostas
- 1474 Exibições
- Última mensagem por LuizAquino

Sáb Mar 31, 2012 15:31
Números Complexos
-
- Números complexos módulo de dois números complexos important
por elisamaria » Qui Jun 11, 2015 16:56
- 1 Respostas
- 15986 Exibições
- Última mensagem por nakagumahissao

Qui Jun 11, 2015 19:20
Números Complexos
-
- Próximo Número...?
por Molina » Sáb Jun 21, 2008 17:44
- 8 Respostas
- 8572 Exibições
- Última mensagem por Rafael Dias

Sáb Ago 30, 2008 22:31
Desafios Fáceis
-
- número de elementos
por sinuca147 » Qui Mai 14, 2009 04:43
- 4 Respostas
- 5885 Exibições
- Última mensagem por sinuca147

Dom Mai 17, 2009 17:14
Conjuntos
-
- apóstolos no número
por lieberth » Qui Jun 18, 2009 18:42
- 2 Respostas
- 1649 Exibições
- Última mensagem por Molina

Sex Jun 19, 2009 08:41
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.