• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Justificar a afirmação

Justificar a afirmação

Mensagempor silvanuno11 » Sex Mai 25, 2012 12:45

Boa tarde,

Alguém me pode ajudar a resolver o seguinte exercício?

Obrigado
Abraço
Anexos
exe4.PNG
silvanuno11
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Mar 26, 2012 20:15
Formação Escolar: SUPLETIVO
Andamento: cursando

Re: Justificar a afirmação

Mensagempor Guill » Dom Mai 27, 2012 21:58

Observe que:

{a}_{x} = \sum_{k=0}^{x}\binom{x}{k}(-1)^k.k

{a}_{x} = \sum_{k=0}^{x}\frac{x!}{k!(x-k)!}(-1)^k.k


Vale a pena notar que k = 0 ou k = 1 não tem diferença na somatória, já que no caso de k = 0, o valor é sempre nulo:

{a}_{x} = \sum_{k=1}^{x}\frac{x.(x - 1)!}{(k-1)!(x-k)!}(-1)^k

{a}_{x} = x.\sum_{k=1}^{x}\binom{x-1}{k-1}(-1)^{k-1}.(-1)

{a}_{x} = -x.\sum_{k=1}^{x}\binom{x-1}{k-1}(-1)^{k-1}


Observe esse binômio de Newton. Note que ele é (1 - 1)^{x-1}:

{a}_{x} = 0


Mas isso não é válido para x = 1, onde {a}_{1} = -1



Agora, desenvolvendo a próxima somatória:

\sum_{j=1}^{n-1}\binom{n}{j}(-1)^j.{a}_{j}

\sum_{j=2}^{n-1}\binom{n}{j}(-1)^j.{a}_{j} + \binom{n}{1}(-1)^1.(-1)

\binom{n}{1}(-1)^1.(-1) = n
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Justificar a afirmação

Mensagempor silvanuno11 » Seg Mai 28, 2012 06:36

Bom dia.

Obrigado pela ajuda. Foi importante.

Abraço.
silvanuno11
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Seg Mar 26, 2012 20:15
Formação Escolar: SUPLETIVO
Andamento: cursando


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)