• Anúncio Global
    Respostas
    Exibições
    Última mensagem

questão dificil.

questão dificil.

Mensagempor natanskt » Seg Dez 13, 2010 18:20

essa duas questões,estou com duvida não consigo bater com o resultado certo.!
simplifique.\frac{2^n.(n+2)!}{(n+4)!.2^{(n-3)}}

agora essa sim é dificil.
considere o desenvolvimento do binomio (2x+1)^6 segundo as potencias decrescente de x. o primeiro,o terceiro e o ultimo termos desse desenvolvimento,nessa ordem,são termos consecutivos de uma progressão geometrica.a razaão dessa progressão é?
a-)1.225
b-)2.175
c-)3.375
d-)4.125
e-)4.275
essa questão é muito dificil.
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: questão dificil.

Mensagempor Molina » Sáb Dez 25, 2010 20:28

natanskt escreveu:essa duas questões,estou com duvida não consigo bater com o resultado certo.!
simplifique.\frac{2^n.(n+2)!}{(n+4)!.2^{(n-3)}}

Boa noite, Natan.

\frac{2^n.(n+2)!}{(n+4)!.2^{(n-3)}}

\frac{2^n.(n+2)!}{(n+4)!.2^n.2^{-3}}

\frac{(n+2)!}{(n+4)!.2^{-3}}

\frac{(n+2)!}{(n+4).(n+3).(n+2)!.2^{-3}}

\frac{1}{(n+4).(n+3).2^{-3}}

\frac{2^3}{(n+4).(n+3)}

\frac{8}{(n+4).(n+3)}

Acho que não dá para simplificar mais do que isso.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.