• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(DUVIDA)Binômio de Newton

(DUVIDA)Binômio de Newton

Mensagempor natanskt » Seg Dez 06, 2010 21:40

DADO O BINOMIO 2x+\frac{1}{X^2})^6,DETERMINE:
A-)O TERMO INDEPENDENTE DE X
B-)O COEFICIENTE DO TERMO EM X^-3

TENTEI,E TENTEI MAIS NUM DA O RESULTADO PEDIDO,POR FAVOR SE ALGUEM FAZER PRA MIM NÃO SIMPLIFIQUE NADA,TO COM DUVIDA EM VARIAS PASSAGENS
natanskt
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 176
Registrado em: Qua Out 06, 2010 14:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: nenhum
Andamento: cursando

Re: (DUVIDA)Binômio de Newton

Mensagempor luispereira » Sex Dez 24, 2010 18:43

a expansão do binômio é dada por:

(a_0+x)^m=\sum^m_{i=0}\frac{m!}{i!(m-i!)}(x^m)(a_0)^{(m-i)}

e, o termo geral é:
T_{i+1}=\frac{m!}{i!(m-i!)}(x^m)(a_0)^{(m-i)}

Arrumando a expressão: \frac{(1+2x^3)^{6}}{x^{12}}
temos para o termo geral :
T_{i+1}=\frac{6!}{i!(6-i)!x^{12}}(2^ix^{3i})

para o termo independente teremos que ter x^0, para que isso aconteça deveremos ter i=4.Aplicando-o no termo geral:

T_{5}=\frac{6!}{4!(6-4)!x^{12}}(2^4x^{12})=15.16=240

Não da tempo para fazer o outro, tente aí.
luispereira
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qui Dez 23, 2010 18:57
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: (DUVIDA)Binômio de Newton

Mensagempor DanielFerreira » Sáb Mar 03, 2012 23:46

natanskt escreveu:DADO O BINOMIO 2x+\frac{1}{X^2})^6,DETERMINE:
B-)O COEFICIENTE DO TERMO EM X^-3

\begin{pmatrix}
   6  \\ 
   0 
\end{pmatrix} . (2x)^6 . (\frac{1}{x^2})^0 + \begin{pmatrix}
   6  \\ 
   1 
\end{pmatrix} . (2x)^5 . (\frac{1}{x^2})^1 + ... + \begin{pmatrix}
   6  \\ 
   6 
\end{pmatrix} . (2x)^0 . (\frac{1}{x^2})^6

Vc deverá encontrar os expoentes de x de modo que a soma resulte - 3.

\begin{pmatrix}
   6  \\ 
   3 
\end{pmatrix} . (2x)^3 . (\frac{1}{x^2})^3 =

\begin{pmatrix}
   6  \\ 
   3 
\end{pmatrix} = \frac{n!}{(n - p)!p!} = \frac{6.5.4.3!}{3! 3!} = \frac{6.5.4}{3.2.1} = 20

(2x)^3 = 8x^3

(\frac{1}{x^2})^3 = \frac{1}{x^6}


\begin{pmatrix}
   6  \\ 
   3 
\end{pmatrix} . (2x)^3 . (\frac{1}{x^2})^3 = 20 . 8x^3 . \frac{1}{x^6}

\begin{pmatrix}
   6  \\ 
   3 
\end{pmatrix} . (2x)^3 . (\frac{1}{x^2})^3 = 160x^3 . \frac{1}{x^6}

\begin{pmatrix}
   6  \\ 
   3 
\end{pmatrix} . (2x)^3 . (\frac{1}{x^2})^3 = \frac{160x^3}{x^6}

\begin{pmatrix}
   6  \\ 
   3 
\end{pmatrix} . (2x)^3 . (\frac{1}{x^2})^3 = 160x^{-3}}

160
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}