• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Binômio , questão da Unirio

Binômio , questão da Unirio

Mensagempor Stephanie » Sáb Jul 31, 2010 17:43

Eu não faço a minima ideia de o que é o termo médio e o meu desenvolvimento está errado! por favor me ajudem!!

No desenvolvimento de (x+y) [elevado a n ] a diferença entre os coeficientes da 3º e do 2º termo é igual a 54. Podemos afirmar que o temro médio é o :

a- 3º
b- 4º
c- 5º
d- 6º
e- 7º

Obrigada
Stephanie
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Jul 31, 2010 17:33
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Binômio , questão da Unirio

Mensagempor Molina » Dom Ago 01, 2010 13:55

Stephanie escreveu:Eu não faço a minima ideia de o que é o termo médio e o meu desenvolvimento está errado! por favor me ajudem!!

No desenvolvimento de (x+y) [elevado a n ] a diferença entre os coeficientes da 3º e do 2º termo é igual a 54. Podemos afirmar que o temro médio é o :

a- 3º
b- 4º
c- 5º
d- 6º
e- 7º

Obrigada

Bom dia.

Primeiramente, Termo Central ou Médio é aquele que fica no meio, se o desenvolvimento for de grau par.

Por exemplo, em (a+b)^2, onde n=2, o grau é par. Desenvolvendo este binômio temos que:

(a+b)^2=a^2+2ab+b^2, ou seja, o termo médio é o 2ab, por estar justamente no CENTRO do desenvolvimento do binômio.

Considerando agora um binômio genérico, ou seja, (x+y)^n, pela fórmula geral do Binômio de Newton, temos que:

T_{p+1}=\begin{pmatrix}
   n  \\ 
   0 
\end{pmatrix}x^ny^0+
\begin{pmatrix}
   n  \\ 
   1 
\end{pmatrix}x^{n-1}y^1+
\begin{pmatrix}
   n  \\ 
   2 
\end{pmatrix}x^{n-2}y^2+...

Como a questão fala em 2° e 3° termo, não precisamos dar continuidade no desenvolvimento. Os coeficientes destes termos são, respectivamente, \begin{pmatrix}
   n  \\ 
   1 
\end{pmatrix} e \begin{pmatrix}
   n  \\ 
   2 
\end{pmatrix}.

Seguindo o que o enunciado diz, \begin{pmatrix}
   n  \\ 
   1 
\end{pmatrix}- \begin{pmatrix}
   n  \\ 
   2 
\end{pmatrix}=54

Vale lembrar que \begin{pmatrix}
   n  \\ 
   p 
\end{pmatrix}=C_{n,p}=\frac{n!}{(n-p)!p!}

Desenvolvendo \begin{pmatrix}
   n  \\ 
   1 
\end{pmatrix}- \begin{pmatrix}
   n  \\ 
   2 
\end{pmatrix}=54 chegamos em n=-9 e n=12. Ficamos apenas com o valor positivo, ou seja, n=12.

Isso significa, que desenvolvendo agora (x+y)^{12} teremos T_1,\;T_2,\;T_3,\;...\;,\;T_{13} termos.

Basta você verificar de 1 ao 13 qual é o termo central.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}