• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(MACK) Em [0, 2?], se...

(MACK) Em [0, 2?], se...

Mensagempor manuoliveira » Ter Jun 01, 2010 21:02

(MACK) Em [0, 2?], se \alpha é a maior raiz da equação \begin{displaymath}
\left( \begin{array}{ccc}
4\\
0 \\ \end{array} \right)
\end{displaymath} . cos^4x - \begin{displaymath}
\left( \begin{array}{ccc}
4\\
1 \\ \end{array} \right)
\end{displaymath} . cos^3x + \begin{displaymath}
\left( \begin{array}{ccc}
4\\
2 \\ \end{array} \right)
\end{displaymath} . cos^2x - \begin{displaymath}
\left( \begin{array}{ccc}
4\\
3 \\ \end{array} \right)
\end{displaymath} . cos x + 1 = 0, então sen 3\alpha/4 vale:

Resposta: -1
manuoliveira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 61
Registrado em: Qui Abr 01, 2010 19:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando

Re: (MACK) Em [0, 2?], se...

Mensagempor Douglasm » Qua Jun 02, 2010 13:40

Olá Manu. Sendo esse o desenvolvimento do binômio \left(cos x - 1\right)^4, temos:

\left(cos x - 1\right)^4 = 0 \; \therefore \; cos x - 1 = 0 \; \therefore \; cos x = 1

Nessa situação, x poderá assumir 2 valores: 0 \;rad e 2\pi \;rad. Como \alpha é a maior raiz, ficamos com 2\pi\;rad. Deste modo:

sen \frac{3 . 2\pi}{4} = sen \frac{3\pi}{2} = -1

Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: (MACK) Em [0, 2?], se...

Mensagempor Mathmatematica » Dom Jun 06, 2010 21:22

Legal!!! As questões binomiais são mesmo muito interessantes!!!
Mathmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Sex Jun 04, 2010 23:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado
Andamento: cursando


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.