• Anúncio Global
    Respostas
    Exibições
    Última mensagem

UNIFOR - CE

UNIFOR - CE

Mensagempor Jhonatan » Dom Out 30, 2016 10:55

A soma (30) + 2(30) + (30) é igual a :
_______(8)____(9)___(10)


R: (32)
__(10)

Pessoal, estou começando agora com Binômio de Newton.
Poderiam me esclarecer como faço para resolver esse modelo de questão ?
Muito obrigado.
Jhonatan
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jul 07, 2016 10:24
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: UNIFOR - CE

Mensagempor DanielFerreira » Dom Out 30, 2016 22:47

Olá Jhonatan, seja bem-vindo!

Inicialmente, devemos expandir o binômio do meio,veja:

\\ \mathsf{\binom{30}{8} + 2 \cdot \binom{30}{9} + \binom{30}{10} =} \\\\\\ \mathsf{\binom{30}{8} + \binom{30}{9} + \binom{30}{9} + \binom{30}{10} =}

Por conseguinte, aplica-se a Relação de Stifel:

\\ \mathsf{\forall \ n, k \in \mathbb{N}, \ tal \ que \ 1 \leq k \leq n \ tem-se:} \\\\ \mathsf{\binom{n - 1}{k - 1} + \binom{n - 1}{k} = \binom{n}{k}}

Irei somar os dois termos iniciais... O restante será com você, ok?!

Segue,

\\ \mathsf{\binom{30}{8} + \binom{30}{9} =} \\\\\\ \mathsf{\binom{30}{9}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1641
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: UNIFOR - CE

Mensagempor Jhonatan » Dom Out 30, 2016 23:12

Muito obrigado por sua ajuda, amigo.
Vou tentar terminar aqui.
Jhonatan
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jul 07, 2016 10:24
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: UNIFOR - CE

Mensagempor DanielFerreira » Sáb Dez 17, 2016 22:25

DanielFerreira escreveu:Olá Jhonatan, seja bem-vindo!

Inicialmente, devemos expandir o binômio do meio,veja:

\\ \mathsf{\binom{30}{8} + 2 \cdot \binom{30}{9} + \binom{30}{10} =} \\\\\\ \mathsf{\binom{30}{8} + \binom{30}{9} + \binom{30}{9} + \binom{30}{10} =}

Por conseguinte, aplica-se a Relação de Stifel:

\\ \mathsf{\forall \ n, k \in \mathbb{N}, \ tal \ que \ 1 \leq k \leq n \ tem-se:} \\\\ \mathsf{\binom{n - 1}{k - 1} + \binom{n - 1}{k} = \binom{n}{k}}

Irei somar os dois termos iniciais... O restante será com você, ok?!

Segue,

\\ \mathsf{\binom{30}{8} + \binom{30}{9} =} \\\\\\ \boxed{\mathsf{\binom{30}{9}}}


Há um erro na última linha...

O correto seria: \Large \mathbf{\binom{31}{9}}.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1641
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59