• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida em igualdade de somatório com combinacoes

Dúvida em igualdade de somatório com combinacoes

Mensagempor mdroid » Dom Mar 25, 2012 16:04

Boa tarde.

tenho o seguinte problema para resolver mas estou com dúvidas:

Problema: Verificar se é verdadeira a seguinte igualdade e justificar:
\sum_{i=0}^{n}i\binom{m}{i}\binom{n}{i} = \frac{(m+n-1)!}{(m-1)!(n-1)!}


Após analisar, percebi que se fosse \sum_{i=0}^{n}\binom{m}{i}\binom{n}{i}, (sem o i a multiplicar por \binom{m}{i}\binom{n}{i})
aplicando a lei da simetria dava \sum_{i=0}^{n}\binom{m}{i}\binom{n}{n-i}
e aplicando a convolução de vandermonde \sum_{i=0}^{n}\binom{m}{i}\binom{n}{n-i} =\binom{m+n}{n} e depois continuava-se sem o somatório.

A minha pergunta é como eu lido com o i dentro do somatório de forma a validar a igualdade inicial? Pelas propriedades dos somatório que conheço, não é possível passar o i para fora do somatório.

Obrigado.
mdroid
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mar 25, 2012 15:41
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}