• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Anagramas

Anagramas

Mensagempor heloisacarvalho83 » Seg Fev 27, 2012 22:37

Quantos são os anagramas da palavra
I N D E P E N D E NT I S T A:
(a) começados por D e terminados em E? Justifique;

A palavra I N D E P E N D E NT I S T A é composta por 15 letras, como os anagramas tem que começar por D ou E, prossigamos da seguinte forma. Fixemos D e E, nos restarão 13 letras, sendo duas repetidas(E)

D __ __ __ __ __ __ __ __ __ __ __ __ __ E

Logo o número de permutações que faremos será

P13,2= 13!/2!=13X12X11X10X9X8X7X6X5X4X3X2X1/(2X1)=
=6227020800/2=3113510400


(b) que contenham as letras E e D juntas? Justifque;

Sabemos que a palavra I N D E P E N D E NT I S T A é composta por 15 letras. Como teremos que ter as letras D e E juntas, consideraremos a junção D e E com uma única posição no anagrama. Como as letras D e E se repetem teremos duas repetições destas.Logo teremos

2 X 2 X 11 X 10 X 9 X 8 X 7 X 6 X 5 X 4 X 3 X 2 X 1/2=79833600



(c) que contenham as letras E e D separadas? Justifque

A palavra I N D E P E N D E NT I S T A é composta por 15 letras,os angramas não podem ter as letras D e E juntas.Sabemos pela questão 4.b que o número de anagramas onde as letras D e E aparecem juntas é 79833600, vamos considerar:

A= número de todos os anagramas da palavra I N D E P E N D E NT I S T A.
B=número de anagramas onde as letras D e E aparecem juntas.
C= número de anagramas onde as letras D e E aparecem separadas

Logo teremos:
A-B= P15,3,2 – 4P11,2=1089728640000-79833600=108893030400
Gostaria de saber se meu raciocinio está correto?!
heloisacarvalho83
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Fev 27, 2012 22:25
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: exatas
Andamento: formado

Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?