• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Tamanho da amostra - população heterogenia e pequena

Tamanho da amostra - população heterogenia e pequena

Mensagempor Roniberto » Sex Fev 13, 2009 15:41

Tenho dificuldade em identificar o tamanho da população a ser estudada e, consequente dificuldade com o tamanho da amostra.

Quero investigar as competências do profissional que trabalha com análise de informações. O problema é que estes profissionais tem origem em uma diversidade de profissões, com isso, não tenho mecanismos para identificar tais profissionais. Pensei em convidar o maior número prossivel de pessoas a participarem desta pesquisa. Com as características da minha população (heterogenia e pequena) estou com dificuldades de definir o tamnho da amostra.

Poderia fz uma primeira investigação sobre o assunto e no futuro os resultados desta servir de insight para delinear o tamanho da população no futuro.

Alguem poderia me appontar uma solução?
Roniberto
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Fev 13, 2009 15:24
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da informação
Andamento: cursando

Re: Tamanho da amostra - população heterogenia e pequena

Mensagempor Molina » Sáb Fev 14, 2009 04:13

Boa noite, Roniberto.

Para não te deixar sem resposta, pesquisei sobre isto na internet e o mais próximo que consegui chegar no seu questionamento é isso:

A amostragem probabilística reúne todas as técnicas que usam mecanismos aleatórios na seleção dos elementos da amostra, atribuindo a cada um deles uma probabilidade, conhecida a priori, de pertencer à amostra. Portanto, para tirar conclusões precisas sobre a população de estudo a partir dos resultados da amostra e ser possível o conhecimento e controle dos erros amostrais, a maneira estatisticamente correta de se escolher os indivíduos da população é através da amostragem probabilística. Na amostragem probabilística são utilizados com maior freqüência os seguintes tipos: Amostragem Aleatória Simples, Amostragem Sistemática, Amostragem Estratificada, Amostragem por Conglomerado e Amostragem por múltiplos estágios: combinações dos métodos citados acima.

Mas muitas vezes isto não é possível na prática, pois há muitas situações que dificultam a aplicação do processo totalmente aleatório de seleção, como por exemplo: na área médica por questões de ética não é possível contar com todos os indivíduos na qual se está interessado estudar. Nesses casos, pode-se usar um plano de amostragem não probabilístico, no qual a seleção da amostra depende das características do estudo em questão.


fonte: http://www.propg.ufscar.br/publica/4jc/ ... riusso.htm

Espero não ter viajado muito na ajuda.

Abraços. :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Tamanho da amostra - população heterogenia e pequena

Mensagempor Roniberto » Ter Fev 17, 2009 09:22

Valeu Diego!

A dica foi na mosca e a referencia que passou é o que eu procurava para validar meu trabalho.

Um abraço
Roniberto
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Fev 13, 2009 15:24
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Ciência da informação
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.