por Claulopes » Qua Nov 03, 2010 20:24
Olá!
Tenho um problema de probabilidade do 9º ano que não consigo entender! É o seguinte:
Se lançarmos uma moeda 4 vezes, qual a probabilidade de obter CARA nos quatro lançamentos?
Na solução do problema o autor montou um diagrama de árvore que eu não consigo entender.
Disse ainda que são 16 resultados possíveis e que para cada lançamento há duas possibilidades: 2.2.2.2=16 possibilidades no total. Ele diz que a probabilidade de obter CARA é de 1/16.
Não tenho conseguido entender pq 16 possibilidades e nem o diagrama de árvore (em anexo).
Abraços
Clau
- Anexos
-
[O anexo não pode ser exibido, pois a extensão pdf foi desativada pelo administrador.]
-
Claulopes
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sex Set 24, 2010 01:31
- Formação Escolar: ENSINO FUNDAMENTAL II
- Andamento: cursando
por 0 kelvin » Qua Nov 03, 2010 21:43
O diagrama da árvore, nesse caso da moeda, preste atenção onde a árvore começa, a raiz, até as ramificações finais. Acompanhe o diagrama como ele é, começa com uma moeda e se ramifica em dois casos, cara ou coroa. Depois de um caso de cara ou coroa, mais outro caso de cara ou coroa (é a mesma moeda sendo novamente lançada). E como são quatro lançamentos, a ramificação acaba depois de 4 etapas.
São 16 ramos no final, desses, apenas um deles representa o caso cara + cara + cara + cara. Mas tome cuidado! Se uma questão pergunta a probabilidade de se obter duas caras e duas coroas, veja que como a questão não especifica ordem, há mais de um caso com duas caras e duas coroas. As questões mais complicadas desse tipo de problema costumam especificar a ordem dos resultados, como por ex: "obter cara até o terceiro lançamento?".
2 . 2 . 2 . 2 = 16. Percebeu que cara ou coroa não depende dos resultados anteriores e nem posteriores? Se forem lançadas quatro moedas ao mesmo tempo, mantendo a pergunta, a probabilidade continua igual.
-
0 kelvin
- Usuário Parceiro

-
- Mensagens: 78
- Registrado em: Dom Out 31, 2010 16:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciencias atmosfericas
- Andamento: cursando
por Claulopes » Qua Nov 03, 2010 23:08
Olá!
Como fazer então para encontrar a probabilidade sem ter q fazer a árvore?
Dá pra encontrar por exemplo a probabilidade de obter cinco caras em cinco lançamentos fazendo potencia de base dois, assim: 2.2.2.2.2=

=32, 32 seria o número de possiblidades. Mas, como saber o número de possibilidades favoráveis sem o diagrama de árvore?
-
Claulopes
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sex Set 24, 2010 01:31
- Formação Escolar: ENSINO FUNDAMENTAL II
- Andamento: cursando
por 0 kelvin » Qui Nov 04, 2010 12:09
Nesse caso da moeda esta certo, potência de base 2. Se fossem 3 lados, a base seria 3 e assim por diante.
O diagrama da árvore serve para poucas possibilidades, a partir de 8 ou mais casos já começa a ficar grande demais, aí vc precisa saber o espaço amostral.
Por ex: se forem
quatro lançamentos e a pergunta for "a probabilidade de ocorrer
apenas uma cara".
Faça o espaço amostral de quatro elementos {Ca, Co, Co, Co}. Ca pode ser no primeiro, segundo, terceiro ou quarto lançamento. São quatro casos favoráveis. Continuam sendo 16 casos no total.

.
Se a pergunta mudar para a probabilidade de ocorrer pelo menos uma cara?
Aí existem dois caminhos: um é manualmente contar quantos casos, entre os 16, possuem pelo menos uma cara. Mas, percebeu que tambem é trabalhoso quanto maior for o total de possibilidades? Nesse caso vc pode pensar no oposto, no lugar de pensar em todos os casos possíveis de sair pelo menos uma cara, pensa nos casos possíveis em que sempre sai coroa. Quantos casos, dos 16, não tem nenhuma cara? Apenas o caso de sair coroa quatro vezes.

-
0 kelvin
- Usuário Parceiro

-
- Mensagens: 78
- Registrado em: Dom Out 31, 2010 16:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciencias atmosfericas
- Andamento: cursando
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Altura da árvore
por dandara » Dom Dez 21, 2014 19:33
- 1 Respostas
- 1496 Exibições
- Última mensagem por nakagumahissao

Seg Dez 22, 2014 16:05
Geometria Plana
-
- Diagrama
por Thiago 86 » Seg Fev 11, 2013 19:44
- 3 Respostas
- 1654 Exibições
- Última mensagem por DanielFerreira

Qui Fev 14, 2013 23:16
Conjuntos
-
- Diagrama de Venn
por Elton » Sex Mar 13, 2015 09:52
- 2 Respostas
- 3142 Exibições
- Última mensagem por Elton

Sáb Mar 14, 2015 16:40
Conjuntos
-
- Problema Sobre Diagrama de Venn
por PlasticHobo » Ter Out 04, 2011 19:54
- 1 Respostas
- 1831 Exibições
- Última mensagem por Neperiano

Qui Out 06, 2011 15:14
Estatística
-
- Teoria dos Conjuntos Diagrama de Venn
por pkutwak » Seg Ago 29, 2016 23:08
- 0 Respostas
- 1319 Exibições
- Última mensagem por pkutwak

Seg Ago 29, 2016 23:08
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.