por DanielRJ » Qua Set 22, 2010 19:29
Bom pessoal to aqui pela ultima vez hj..falta pouco pra eu terminar minha apostila e somente posto questão aqui quando não encontro solução então peço mais uma vez a ajudinha de vocês porque não sei nem como esquematizar esta questão.Dados dois conjuntos

e

. Passa-se ao acaso um elemento do conjunto

para o conjunto

e depois escolhe-se, tambem ao acaso, um elemento de

. A probabilidade deste elemento ser ímpar é:
a)5/9
b)2/9
c)5/12
d)7/12
e)7/9
Eu ia posta uma duvida rapida aqui mais deixo pra quando responderem 
-

DanielRJ
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Sex Ago 20, 2010 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por gichan » Qui Set 23, 2010 13:27
A probabilidade de escolher um número ímpar depende de qual número passou do conjunto A para o conjunto B, certo? Então vamos analisar as duas possibilidades (do elemento passado ser par OU do elemento passado ser ímpar).
1) Elemento é par.
Existem 2 elementos pares em A num total de 4 elementos:

. _
Assim, o novo grupo B apresenta 3 nºs ímpares de 6 elementos:

, essa é a probabilidade de se retirar um nº ímpar de B caso o elemento inserido de A seja par. Mas, vamos analisar a probabilidade caso o elemento de A seja ímpar:
2) Elemento é ímpar.
Existem 2 elementos ímpares num total de 4.

. _
Assim, o novo grupo B apresenta 4 nºs ímpares num total de 6 números.

: Probababilidade de retirar um nº ímpar de B caso o elemento retirado de A seja ímpar.
Concluindo: O elemento de A pode ser par ou ímpar: então vamos somar as duas probabilidades:

Letra D.
Qq coisa, pode falar. Se tiver algum erro tbm.
=**
-

gichan
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Seg Jul 19, 2010 15:33
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Programação
- Andamento: formado
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Probabilidade] Exercício Desafio de Probabilidade
por werwer » Qua Mar 21, 2012 18:57
- 0 Respostas
- 10144 Exibições
- Última mensagem por werwer

Qua Mar 21, 2012 18:57
Estatística
-
- Probabilidade - Função Densidade de Probabilidade
por pimgui » Qua Dez 16, 2020 10:53
- 0 Respostas
- 20370 Exibições
- Última mensagem por pimgui

Qua Dez 16, 2020 10:53
Probabilidade
-
- Probabilidade - função probabilidade
por tarlix » Ter Mai 24, 2011 12:41
- 1 Respostas
- 5163 Exibições
- Última mensagem por Neperiano

Dom Out 16, 2011 17:00
Estatística
-
- [Probabilidade] probabilidade de obj com estudantes
por fenixxx » Seg Ago 13, 2012 14:06
- 1 Respostas
- 4399 Exibições
- Última mensagem por Neperiano

Ter Out 09, 2012 10:10
Probabilidade
-
- [probabilidade condicional] probabilidade de gol.
por Mr_ MasterMind » Sáb Set 19, 2015 17:35
- 0 Respostas
- 4410 Exibições
- Última mensagem por Mr_ MasterMind

Sáb Set 19, 2015 17:35
Probabilidade
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.