• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida - Princípio Fund. da Contagem

Dúvida - Princípio Fund. da Contagem

Mensagempor RJ1572 » Sex Fev 26, 2010 13:16

Considere todos os números de 4 algarismos distintos, formados com os dígitos 1,2,3,4,5,6,7,8 e 9. Quantos destes são ímpares e maiores que 3000?

A resposta é 1302, mas não estpou conseguindo chegar a essa resposta.
RJ1572
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Sex Fev 26, 2010 13:00
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Dúvida - Princípio Fund. da Contagem

Mensagempor Molina » Sex Fev 26, 2010 14:44

RJ1572 escreveu:Considere todos os números de 4 algarismos distintos, formados com os dígitos 1,2,3,4,5,6,7,8 e 9. Quantos destes são ímpares e maiores que 3000?

A resposta é 1302, mas não estpou conseguindo chegar a essa resposta.

Boa tarde.

Problemas assim faça como Jack, vá por partes, rs...

Primeiramente verifique o total de números ímpares de 4 algarismos distintos:
Para isso temos apenas cinco opções para o algarismo da unidade (1,3,5,7 e 9); oito opções para o algarismo da dezena; sete opções para o algarismo da centena; e seis opções para o algarismo da unidade de milhar. Multiplicando os valores sublinhados:

6*7*8*5=1680

Agora vamos retirar desses 1680, os algarismos menores de 3000, da seguinte forma:

Números de 4 algarismos que iniciem com o algarismo 1:
1*6*7*4=168 (modo de opções igual fiz anteriormente)
Note que como o primeiro algarismo é o 1 (número ímpar), resta apenas 4 opções para o algarismo da unidade (3,5,7 e 9).

Números de 4 algarismos que iniciem com o algarismo 2:
1*6*7*5=210 (modo de opções igual fiz anteriormente)
Note que como o primeiro algarismo é o 2 (número par), resta ainda 5 opções para o algarismo da unidade (1,3,5,7 e 9).

Total de números ímpares de 4 algarismos distintos menores que 3000:
168+210=378

Números de 4 algarismos distintos, ímpares e maiores que 3000:
1680-378=1302


Acho que está bem detalhado. Mas se não entender alguma passagem, avise! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59