por Daniel Gurgel » Seg Out 05, 2009 12:24
Olá pessoal, não estou conseguindo resolver essa questão, se alguém conseguiir mande-me a resolução por favor.
Numa urna há:
*Uma bola numerada com 1;
*Duas bolas com o número 2;
*Três bolas numeradas com o número 3, e assim por diante, até n bolas com o número n.
Uma bola é retirada ao acaso dessa urna. Admitindo-se que todas as bolas têm a mesma probabilidade de serem escolhidas, qual é, em função de n, a probabilidade de que o número da bola retirada seja par?
Res:(n+2)/2(n+1)
-
Daniel Gurgel
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Sáb Ago 22, 2009 18:04
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: concursos
- Andamento: cursando
por carlos r m oliveira » Ter Out 06, 2009 16:04
Pode fazer assim:
1 *
2 * *
3 * * *
4 * * * *
n * * * .....*
i) Cálculo do espaço amostral:
Observe que isso é uma PA de razão 1:
E a soma dos n termos é dada por:
S = (a1 + an)*n/2 ==> S = (1 + n)*n/2
ii) Cálculo do total de números pares do espaço amostral: também é uma PA de 1º termo = 2
Spar = ((2 + n)*n/2)/2
iii) Cálculo da probabilidade:
Seja X = a bolinha é par
P(x) = Spar/Stotal = (n+2)/2(n+1) após as devidas simplificações
Carlos
-
carlos r m oliveira
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Seg Out 05, 2009 11:13
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: administração
- Andamento: cursando
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Probabilidade] Exercício Desafio de Probabilidade
por werwer » Qua Mar 21, 2012 18:57
- 0 Respostas
- 10332 Exibições
- Última mensagem por werwer

Qua Mar 21, 2012 18:57
Estatística
-
- Probabilidade - Função Densidade de Probabilidade
por pimgui » Qua Dez 16, 2020 10:53
- 0 Respostas
- 21642 Exibições
- Última mensagem por pimgui

Qua Dez 16, 2020 10:53
Probabilidade
-
- Probabilidade - função probabilidade
por tarlix » Ter Mai 24, 2011 12:41
- 1 Respostas
- 5341 Exibições
- Última mensagem por Neperiano

Dom Out 16, 2011 17:00
Estatística
-
- [Probabilidade] probabilidade de obj com estudantes
por fenixxx » Seg Ago 13, 2012 14:06
- 1 Respostas
- 4514 Exibições
- Última mensagem por Neperiano

Ter Out 09, 2012 10:10
Probabilidade
-
- [probabilidade condicional] probabilidade de gol.
por Mr_ MasterMind » Sáb Set 19, 2015 17:35
- 0 Respostas
- 4528 Exibições
- Última mensagem por Mr_ MasterMind

Sáb Set 19, 2015 17:35
Probabilidade
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.