por weverton » Sáb Ago 14, 2010 01:58
(Fuvest 2002) Um tabuleiro tem 4 linhas e 4 colunas. O objetivo de um jogo é levar uma peça da casa inferior esquerda (casa (1, 1)) para a casa superior direita (casa (4, 4)), sendo que esta peça deve mover-se, de cada vez, para a casa imediatamente acima ou imediatamente à direita. Se apenas uma destas casas existir, a peça irá mover-se necessariamente para ela. Por exemplo, dois caminhos possíveis para completar o trajeto são (1,1) ë (1,2) ë (2,2) ë (2,3) ë (3,3) ë (3,4) ë (4,4) e (1,1) ë (2,1) ë (2,2) ë (3,2) ë (4,2) ë (4,3) ë (4,4).
a) Por quantos caminhos distintos pode-se completar esse trajeto?
b) Suponha que o caminho a ser percorrido seja escolhido da seguinte forma: sempre que houver duas opções de movimento, lança-se uma moeda não viciada; se der cara, a peça move-se para a casa à direita e se der coroa, ela se move para a casa acima. Desta forma, cada caminho contado no item a) terá uma certa probabilidade de ser percorrido. Descreva os caminhos que têm maior probabilidade de serem percorridos e calcule essa probabilidade.
me ajudem, desde ja agradeço!
-
weverton
- Usuário Parceiro

-
- Mensagens: 62
- Registrado em: Sex Mai 14, 2010 01:27
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: enfermagem
- Andamento: formado
por DanielRJ » Dom Ago 22, 2010 00:43
weverton escreveu:(Fuvest 2002) Um tabuleiro tem 4 linhas e 4 colunas. O objetivo de um jogo é levar uma peça da casa inferior esquerda (casa (1, 1)) para a casa superior direita (casa (4, 4)), sendo que esta peça deve mover-se, de cada vez, para a casa imediatamente acima ou imediatamente à direita. Se apenas uma destas casas existir, a peça irá mover-se necessariamente para ela. Por exemplo, dois caminhos possíveis para completar o trajeto são (1,1) ë (1,2) ë (2,2) ë (2,3) ë (3,3) ë (3,4) ë (4,4) e (1,1) ë (2,1) ë (2,2) ë (3,2) ë (4,2) ë (4,3) ë (4,4).
a) Por quantos caminhos distintos pode-se completar esse trajeto?
Eai já tem tempo essa pergunta mais não custa nada responder, a letra A é sobre permutação.
vamos lá:
















BASTA VOCE CONTAR QUANTOS MOVIMENTOS SE FAZEM DE A ATE B. E DESIGNAR NOMES A ELES. COMO SÓ PODE MOVER PARA CIMA OU DIREITA EU VOU CHAMAR OS MOVIMENTOS DE (N)PARA CIMA E (L)PARA A DIREITA.
SE VOCÊ CONTAR DIREITINHO SÃO EXATAMENTE 6 MOVIMENTOS!AI PEGA-SE AS INICIAS DOS MOVIMENTOS E FAZ-SE UMA PERMUTAÇÃO.
Movimentos que fiz

logo uma permutação com repetição:



Confere ai? aguarde alguma correção ods professores ai
Desculpe o látex acima é porque não consegui usar a tabela!
-

DanielRJ
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Sex Ago 20, 2010 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Exercícios que não consegui fazer! Me ajudem?!
por mtuliopaula » Seg Nov 09, 2009 14:46
- 1 Respostas
- 6257 Exibições
- Última mensagem por Neperiano

Dom Set 18, 2011 13:50
Estatística
-
- nao consegui fazer de me ajudem ai! paralelepipedo.
por weverton » Qui Set 02, 2010 02:40
- 6 Respostas
- 4172 Exibições
- Última mensagem por MarceloFantini

Qua Set 08, 2010 03:50
Geometria Espacial
-
- Média - não consegui fazer
por cidaiesbik » Qui Mai 21, 2009 10:32
- 2 Respostas
- 3105 Exibições
- Última mensagem por cidaiesbik

Seg Mai 25, 2009 10:18
Desafios Enviados
-
- Não consegui fazer, ajuda?
por Loretto » Sáb Nov 20, 2010 02:13
- 3 Respostas
- 2184 Exibições
- Última mensagem por DanielFerreira

Seg Nov 29, 2010 19:27
Sistemas de Equações
-
- duvida não consegui fazer
por Fabricio dalla » Ter Jul 12, 2011 15:19
- 1 Respostas
- 2448 Exibições
- Última mensagem por SidneySantos

Ter Jul 19, 2011 21:34
Matemática Financeira
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.