• Anúncio Global
    Respostas
    Exibições
    Última mensagem

nao consegui fazer me ajudem

nao consegui fazer me ajudem

Mensagempor weverton » Sáb Ago 14, 2010 01:58

(Fuvest 2002) Um tabuleiro tem 4 linhas e 4 colunas. O objetivo de um jogo é levar uma peça da casa inferior esquerda (casa (1, 1)) para a casa superior direita (casa (4, 4)), sendo que esta peça deve mover-se, de cada vez, para a casa imediatamente acima ou imediatamente à direita. Se apenas uma destas casas existir, a peça irá mover-se necessariamente para ela. Por exemplo, dois caminhos possíveis para completar o trajeto são (1,1) ë (1,2) ë (2,2) ë (2,3) ë (3,3) ë (3,4) ë (4,4) e (1,1) ë (2,1) ë (2,2) ë (3,2) ë (4,2) ë (4,3) ë (4,4).





a) Por quantos caminhos distintos pode-se completar esse trajeto?



b) Suponha que o caminho a ser percorrido seja escolhido da seguinte forma: sempre que houver duas opções de movimento, lança-se uma moeda não viciada; se der cara, a peça move-se para a casa à direita e se der coroa, ela se move para a casa acima. Desta forma, cada caminho contado no item a) terá uma certa probabilidade de ser percorrido. Descreva os caminhos que têm maior probabilidade de serem percorridos e calcule essa probabilidade.

me ajudem, desde ja agradeço!
weverton
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 62
Registrado em: Sex Mai 14, 2010 01:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: enfermagem
Andamento: formado

Re: nao consegui fazer me ajudem

Mensagempor DanielRJ » Dom Ago 22, 2010 00:43

weverton escreveu:(Fuvest 2002) Um tabuleiro tem 4 linhas e 4 colunas. O objetivo de um jogo é levar uma peça da casa inferior esquerda (casa (1, 1)) para a casa superior direita (casa (4, 4)), sendo que esta peça deve mover-se, de cada vez, para a casa imediatamente acima ou imediatamente à direita. Se apenas uma destas casas existir, a peça irá mover-se necessariamente para ela. Por exemplo, dois caminhos possíveis para completar o trajeto são (1,1) ë (1,2) ë (2,2) ë (2,3) ë (3,3) ë (3,4) ë (4,4) e (1,1) ë (2,1) ë (2,2) ë (3,2) ë (4,2) ë (4,3) ë (4,4).





a) Por quantos caminhos distintos pode-se completar esse trajeto?


Eai já tem tempo essa pergunta mais não custa nada responder, a letra A é sobre permutação.
vamos lá:


\fbox .\fbox .\fbox .\fbox b
\fbox .\fbox .\fbox .\fbox .
\fbox .\fbox .\fbox .\fbox .
\fbox a\fbox .\fbox .\fbox .
BASTA VOCE CONTAR QUANTOS MOVIMENTOS SE FAZEM DE A ATE B. E DESIGNAR NOMES A ELES. COMO SÓ PODE MOVER PARA CIMA OU DIREITA EU VOU CHAMAR OS MOVIMENTOS DE (N)PARA CIMA E (L)PARA A DIREITA.

SE VOCÊ CONTAR DIREITINHO SÃO EXATAMENTE 6 MOVIMENTOS!AI PEGA-SE AS INICIAS DOS MOVIMENTOS E FAZ-SE UMA PERMUTAÇÃO.
Movimentos que fiz ( NNNLLL ) logo uma permutação com repetição:


P_6=\frac{6!} {3!.3!}

P_6=\frac {6.5.4}  {3.2}

P_6=20

Confere ai? aguarde alguma correção ods professores ai
Desculpe o látex acima é porque não consegui usar a tabela!
Avatar do usuário
DanielRJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Sex Ago 20, 2010 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.