• Anúncio Global
    Respostas
    Exibições
    Última mensagem

vejam se estou certo...

vejam se estou certo...

Mensagempor weverton » Ter Jun 29, 2010 17:04

tres empresas devem ser contratadas para realizar 4 trabalhos distintos em um condominio.
cada trabalho sara atribuido a uma unica empresa e todas elas devem ser contratadas. de quantas maneiras distintas podem ser distribuidos os trabalhos?

A-12
B-18
C-36
D-72
E-108

eu fiz da seguinte maneira :
4 - número de trabalhos
então
P4 = 4*3*2*1
p4 = 24

ai fiz 3 q é o número de empresas vezes o número de trabalhos:
3* P4 = x
3* 24 = x
x = 72

ai a resposta deu 72 ta certo?
weverton
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 62
Registrado em: Sex Mai 14, 2010 01:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: enfermagem
Andamento: formado

Re: vejam se estou certo...

Mensagempor DanielFerreira » Ter Jun 29, 2010 19:34

A4,1 * A3,1 =

\frac{4 * 3 * 2 * 1}{3 * 2 * 1} * \frac{3 * 2 * 1}{2 * 1} =

4 * 3 =

12
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: vejam se estou certo...

Mensagempor Douglasm » Qua Jun 30, 2010 11:55

Bom dia. Eu discordo de danjr5. Inicialmente, consideremos o número de modos em que podemos organizar os trabalhos: se são 3 empresas e 4 trabalhos, uma delas ficará com dois dos trabalhos. Para determinar de quantos modos isso é possível, fazemos a combinação de 4, 2 a 2.

C_2^4 = \frac{4.3.2.1}{(2.1)(2.1)} = 6

Ou seja, uma das três empresas pode ter 6 possibilidades de combinação de trabalhos. As outras duas ficam com os trabalhos que sobrarem. Deste modo, temos que o número de modos de organizar isso é:

3 . (6.2.1) = 36\; \mbox{possibilidades}

Note que há uma multiplicação por 3 aqui. Ela se dá pelo fato de termos que considerar que qualquer uma das empresas pode ser aquela a pegar dois trabalhos.

A resposta fica sendo a letra C.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: vejam se estou certo...

Mensagempor weverton » Qua Jun 30, 2010 18:11

obrigado vc tem me ajudado mto!!
weverton
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 62
Registrado em: Sex Mai 14, 2010 01:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: enfermagem
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59