• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fatorial - resolução 1

Fatorial - resolução 1

Mensagempor jamiel » Qua Nov 02, 2011 18:50

Quantas números divisíveis por 3, de cinco algarismos distintos, podemos formar com os algarismos 1, 2, 3, 4, 6, 8 e 9?


Eu fiz 7*6*5*4 = 840, deu igual ao gabarito, mas eu fiquei pensando: como os divisíveis por 3 entram nessa história?

Tentei fazer uma árvorezinha aqui no papel, mas é inviável!


Alguém para ajudar nessa?
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando

Re: Fatorial - resolução 1

Mensagempor jose henrique » Qua Nov 02, 2011 20:16

olá, bem os números formados por cinco algarismos e que são divisiveis por três, correto?

________x___________x____________
1º 2º 3º


na verdade a dificuldade está no terceiro, visto que este número formado pelos algarismo 1, 2,3, 4, 6, 8 e 9. e na verdade vc deve começar por este e depois volta para o primeiro e depois para o segundo

129
318
216
e assim por diante
jose henrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qui Ago 12, 2010 20:32
Formação Escolar: ENSINO MÉDIO
Área/Curso: outros
Andamento: formado

Re: Fatorial - resolução 1

Mensagempor jamiel » Qui Nov 03, 2011 02:31

jose henrique escreveu:olá, bem os números formados por cinco algarismos e que são divisiveis por três, correto?

________x___________x____________
1º 2º 3º


na verdade a dificuldade está no terceiro, visto que este número formado pelos algarismo 1, 2,3, 4, 6, 8 e 9. e na verdade vc deve começar por este e depois volta para o primeiro e depois para o segundo

129
318
216
e assim por diante



xJznx escreveu:Cara eu pensei assim.
Agrupar esses 7 números em grupos de 5 , os quais somados dêm um múltiplo de 3 ( critério para um número ser divisível por 3 é a soma de seus algarismos ser um número múltiplo de 3)

ex: Uma possibilidade são esses algarismos: 1/2/3/4/8.

de qualquer maneira que arrumarmos eles , o resultado vai ser divisível por 3 , ou seja , nesse grupo temos 5! números ( permutação simples dos 5 algarismos).

mas to sem tempo pra terminar... mas acho que seguindo nessa linha dá pra sair.


Tentei isso aqui agora a noite -->

98643 = 30
98642 = x
98641 = x
86432 = x
86431 = x
64329 = 24
64328 = x
64321 = x
43219 = x
43218 = 18
43216 = x
32198 = x
32196 = 21
21986 = x
21984 = 24
21983 = x
19863 = 27
19862 = x
98621 = x
86219 = x
62198 = x
21986 = x
21984 = 24
21983 = x
19832 = x ---> eu acho que termina aqui, daqui em diante há repetição!

São 7 casos onde em cada um acontece 5 combinações

7 * 5! = 840 ...

Eu acho que dessa vez foi, einh? rsrr

Putz ... isso requer um pensamento bastante abstrato!
jamiel
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Jan 31, 2011 15:48
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Mecânica
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.