por jamiel » Qua Nov 02, 2011 18:50
Quantas números divisíveis por 3, de cinco algarismos distintos, podemos formar com os algarismos 1, 2, 3, 4, 6, 8 e 9?
Eu fiz 7*6*5*4 = 840, deu igual ao gabarito, mas eu fiquei pensando: como os divisíveis por 3 entram nessa história?
Tentei fazer uma árvorezinha aqui no papel, mas é inviável!
Alguém para ajudar nessa?
-
jamiel
- Colaborador Voluntário

-
- Mensagens: 131
- Registrado em: Seg Jan 31, 2011 15:48
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Mecânica
- Andamento: cursando
por jose henrique » Qua Nov 02, 2011 20:16
olá, bem os números formados por cinco algarismos e que são divisiveis por três, correto?
________x___________x____________
1º 2º 3º
na verdade a dificuldade está no terceiro, visto que este número formado pelos algarismo 1, 2,3, 4, 6, 8 e 9. e na verdade vc deve começar por este e depois volta para o primeiro e depois para o segundo
129
318
216
e assim por diante
-
jose henrique
- Colaborador Voluntário

-
- Mensagens: 129
- Registrado em: Qui Ago 12, 2010 20:32
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: outros
- Andamento: formado
por jamiel » Qui Nov 03, 2011 02:31
jose henrique escreveu:olá, bem os números formados por cinco algarismos e que são divisiveis por três, correto?
________x___________x____________
1º 2º 3º
na verdade a dificuldade está no terceiro, visto que este número formado pelos algarismo 1, 2,3, 4, 6, 8 e 9. e na verdade vc deve começar por este e depois volta para o primeiro e depois para o segundo
129
318
216
e assim por diante
xJznx escreveu:Cara eu pensei assim.
Agrupar esses 7 números em grupos de 5 , os quais somados dêm um múltiplo de 3 ( critério para um número ser divisível por 3 é a soma de seus algarismos ser um número múltiplo de 3)
ex: Uma possibilidade são esses algarismos: 1/2/3/4/8.
de qualquer maneira que arrumarmos eles , o resultado vai ser divisível por 3 , ou seja , nesse grupo temos 5! números ( permutação simples dos 5 algarismos).
mas to sem tempo pra terminar... mas acho que seguindo nessa linha dá pra sair.
Tentei isso aqui agora a noite -->
98643 = 30
98642 = x
98641 = x
86432 = x
86431 = x
64329 = 24
64328 = x
64321 = x
43219 = x
43218 = 18
43216 = x
32198 = x
32196 = 21
21986 = x
21984 = 24
21983 = x
19863 = 27
19862 = x
98621 = x
86219 = x
62198 = x
21986 = x
21984 = 24
21983 = x
19832 = x ---> eu acho que termina aqui, daqui em diante há repetição!
São 7 casos onde em cada um acontece 5 combinações
7 * 5! = 840 ...
Eu acho que dessa vez foi, einh? rsrr
Putz ... isso requer um pensamento bastante abstrato!
-
jamiel
- Colaborador Voluntário

-
- Mensagens: 131
- Registrado em: Seg Jan 31, 2011 15:48
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Mecânica
- Andamento: cursando
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Fatorial
por elisonsevalho » Sex Mar 05, 2010 17:22
- 3 Respostas
- 2288 Exibições
- Última mensagem por Molina

Sáb Mar 06, 2010 14:49
Álgebra Elementar
-
- Fatorial.
por vanessasuellen » Qua Set 07, 2011 21:37
- 1 Respostas
- 1623 Exibições
- Última mensagem por Aliocha Karamazov

Sex Set 09, 2011 01:36
Estatística
-
- Fatorial de 0
por Neperiano » Qua Set 14, 2011 19:45
- 16 Respostas
- 9142 Exibições
- Última mensagem por Neperiano

Sex Set 16, 2011 15:48
Estatística
-
- fatorial
por andersontricordiano » Sáb Fev 11, 2012 13:44
- 1 Respostas
- 1334 Exibições
- Última mensagem por MarceloFantini

Sáb Fev 11, 2012 14:50
Estatística
-
- fatorial
por andersontricordiano » Sáb Fev 11, 2012 20:31
- 1 Respostas
- 1300 Exibições
- Última mensagem por MarceloFantini

Sáb Fev 11, 2012 20:43
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.