• Anúncio Global
    Respostas
    Exibições
    Última mensagem

distribuição de Poisson.

distribuição de Poisson.

Mensagempor saseong » Seg Dez 01, 2008 20:10

Admita que se está a realizar um estudo de ampliação do número de gabinetes numa
portagem de uma auto-estrada. Constata-se que a probabilidade de um veículo parar num
destes postos para pagar, num determinado instante, é uma v.a. com distribuição de
Poisson. Sabendo que a probabilidade de nenhum veículo se apresentar para pagar, num
determinado instante, é igual a 0.4066, determine a probabilidade de haver menos de 3
veículos em fila, num determinado instante.

A solução supostamente é 0.063, mas não consigo chegar a ela
saseong
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Dez 01, 2008 20:06
Formação Escolar: ENSINO MÉDIO
Área/Curso: tecnologias
Andamento: cursando

Re: distribuição de Poisson.

Mensagempor Sandra Piedade » Ter Dez 02, 2008 18:43

Olá saseong! :)
Diga o que já tentou fazer nessa questão, por favor. A minha área não é a estatística mas creio que vou poder ajudar.
Há três tipos de matemáticos: os que sabem contar e os que não sabem contar.
(perdão mas já não me lembro da origem da frase)
Avatar do usuário
Sandra Piedade
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 40
Registrado em: Ter Set 30, 2008 07:25
Localização: Setúbal, Portugal
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic em Ensino da Matemática (Portugal)
Andamento: cursando

Re: distribuição de Poisson.

Mensagempor saseong » Ter Dez 02, 2008 20:13

Olá!

Eu tentei usar a fórmula matemática da distribuição de Poisson

p(x)= u^x . e^-u / x!

considerei como x=2, o u=0,4066 e 2! que me deu 0,55.

Tentei também por combinações 2C2 . 0,5934^2 . 0,4066^2 que me deu 0,058.

A distribuição binomial diz-nos que pode ser aproximada por uma distribuição de Poisson fazendo U=n.p , mas neste o p<0,1 mas o n não é grande.

Tens ideias?
saseong
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Dez 01, 2008 20:06
Formação Escolar: ENSINO MÉDIO
Área/Curso: tecnologias
Andamento: cursando

Re: distribuição de Poisson.

Mensagempor Sandra Piedade » Qua Dez 10, 2008 21:17

Oi saseong! Desculpe a minha demora, mas tenho tido imenso trabalho, tem sido complicado vir aqui...

Ora bem, tal como eu disse, não sou especialista em estatística, mas tenho algumas ideias sobre o assunto. Ora, a probabilidade de haver menos de 3
veículos em fila, num determinado instante é P(0)+P(1)+P(2), ou seja, a soma das probabilidades de haver zero, um ou dois veículos em fila num dado instante. Mas precisamos saber o u. Para isso, usamos os dados: a probabilidade de nenhum veículo se apresentar para pagar, num determinado instante, é igual a 0.4066, ou seja, P(0)=0.4066. Daqui conseguimos retirar o u e depois já temos a fórmula geral para calcular P(1) e P(2), fazendo x=1 e x=2, respectivamente. Veja se assim já vai dar. Depois diga como correu, ok? E entretanto, se algum colega mais conhecedor em distribuições de probabilidade quiser acrescentar ou corrigir alguma coisa, agradecemos!
Há três tipos de matemáticos: os que sabem contar e os que não sabem contar.
(perdão mas já não me lembro da origem da frase)
Avatar do usuário
Sandra Piedade
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 40
Registrado em: Ter Set 30, 2008 07:25
Localização: Setúbal, Portugal
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic em Ensino da Matemática (Portugal)
Andamento: cursando

Re: distribuição de Poisson.

Mensagempor saseong » Ter Dez 23, 2008 17:55

Olá!

Já sei o que havia de errado com este exercicio, no enunciado "probabilidade de haver menos de 3 veículos em fila, num determinado instante" é "haver pelo menos", daí o resultado não dar certo. Apesar de tudo apresentei o exercicio à minha professora e foi ela que reparou, pois embora tivesse metido em causa a solução, o enunciado nunca meti.

E assim a p(x>=3)=0,063

Dados:
p(0)=0,4066
p(0)+p(1)+p(2)=0,4066+0,3659+0,1647

p(x)=u^x . e^-u / x!
p(0)=u^0 . e^-u / 0!
p(0)=1 . e^-u / 1
e^-u = 0,4066
-u = log(0,4066)
u=0,9

Os valores fui depois buscar à tabela.

Muito obrigado pela atenção Sandra Piedade,
Um bom Natal e um optimo ano novo!
saseong
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Dez 01, 2008 20:06
Formação Escolar: ENSINO MÉDIO
Área/Curso: tecnologias
Andamento: cursando

Re: distribuição de Poisson.

Mensagempor Sandra Piedade » Dom Dez 28, 2008 17:19

Ainda bem que esclareceu a dúvida, pois eu não saberia ajudar mais... Um bom 2009 para você também! Abraço
Há três tipos de matemáticos: os que sabem contar e os que não sabem contar.
(perdão mas já não me lembro da origem da frase)
Avatar do usuário
Sandra Piedade
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 40
Registrado em: Ter Set 30, 2008 07:25
Localização: Setúbal, Portugal
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic em Ensino da Matemática (Portugal)
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.