• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão prob sobre experanca e variancia

Questão prob sobre experanca e variancia

Mensagempor arthursc » Qui Nov 27, 2008 20:14

oi, boa noite a todos.

o exercício que estou com dúvida é o seguinte:

Seja X com distribuição dada abaixo; Calcule E(X). Considere a variável aleatória (X-a)^2 e calcule E(X-a)^2 para a = 1, 1/4, 1/2, 3/4, 1. Obtenha o gráfico de E(X-a)^2 = g(a).Para qual valor de a, g(a) é minímo?

x___|__0_|__1_|___2
p(x) | 1/2 | 1/4 | 1/4

O E(X) eu calculei, se não estiver errado, a resposta é 6/8.
Agora a parte da v.a. (X-a)^2, gostaria que alguém pudesse me ajudar.

Muito Obrigado pela atenção.
arthursc
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Nov 27, 2008 20:03
Formação Escolar: GRADUAÇÃO
Área/Curso: ciencia da computacao
Andamento: cursando

Re: Questão prob sobre experanca e variancia

Mensagempor carlos r m oliveira » Ter Out 06, 2009 15:08

Olá...
Fiz meio rapidinho... verifique se contém erro na sequencia:

g(a) = E(x-a)^2

g(a) = E(x~2 - 2xa + a^2)

g(a) = E(x^2) - E(2xa) + E(a^2)

g(a) = E(x^2) - 2aE(x) + a^2

derivando g(a) em "a" e igualando a zero: [E(x^2) é um número (constante), por isso sua derivada é zero, visto que estou derivando em função de a]

g´(a) = 0 - 2E(x) +2a = 0 ==> a = E(x) = 6/8 (segundo seu cálculo inicial da esperança, o qual não conferi!)
carlos r m oliveira
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Seg Out 05, 2009 11:13
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: administração
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59