• Anúncio Global
    Respostas
    Exibições
    Última mensagem

função de variael aleatoria

função de variael aleatoria

Mensagempor Mppl » Qui Jan 27, 2011 08:11

Suponha que a variavel aleatoria X é uniformemente distribuida em [-4; 2]. Sendo
Y = 9 - X^2, determine a função densidade de probabilidade de Y .

Bem ate agora eu sei a função de densidade de probabilidade de X=1/6

E tanto quanto sei f(y)=f(x)*(dx/dy) se dy/dx for positivo ou então f(y)=f(x)*-(dx/dy) se dy/dx for negativo só que tenho um problema com isto... primeiro como parto o intervalo? vou ter que o partir em duas partes so que pelas minhas contas um sobrepoe-se ao outro... e como se não chegasse uma das densidades dá negativa...o que tenho eu mal?
Mppl
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Jan 26, 2011 21:04
Formação Escolar: SUPLETIVO
Área/Curso: Física
Andamento: cursando

Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.