Estou com uma dúvida em uma questão simples de Arranjos, até já resolvi a questão, mas uma dúvida ficou:
A questão é a seguinte: Tenho um conjunto de 9 números {1, 2, 3, 4, 5, 6, 7, 8, 9}, e quero saber quantos grupos de 7 elementos distintos posso formar com esses números, de modo que os números 5 e 6 fiquem sempre juntos e nessa mesma ordem.
Eu resolvi a questão da seguinte maneira:
Imaginando 7 espaços, os 2 primeiros espaços são reservados para o 5 e o 6, e os outros espaços vão ser arranjos de 7 elementos 5 a 5. E como o 5 e o 6 podem mudar de posição 6 vezes, multiplico esse arranjo por 6. Ou seja A7,5 * 6 = 15120 elementos diferentes. (que é a resposta correta)
_1_ x _1_ x _7_ x _6 x _5_ x _4_ x _3_ (*6) = 15120
blz, mas fazendo da seguinte maneira, que eu imaginava que também devia dar certo, não obtenho o mesmo resultado:
Como o 5 e o 6 ficarão sempre juntos e nessa ordem, posso imaginá-los como sendo um único elemento que gasta apenas 1 espaço (posso mesmo?), logo teria 8 elementos {1, 2, 3, 4, 5-6, 7, 8, 9} e 6 espaços, bastando fazer o arranjo de 8 elementos 6 a 6. Mas isso me retorna 20160.
Por que fazer isso está errado?

. Porém, não necessariamente os números 5 e 6 devem estar posicionados no começo. Podem ser colocados no meio, ou no final, ou depois. Enfim, a lógica é que ele pode trocar de ordem, e para representar essa troca de ordem multiplicamos por 6, que é o número de posições que ele pode ocupar:
.

![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.