por DanielRJ » Sáb Out 30, 2010 20:49
cinco rapazes e cinco moças devem posar para fotografia ocupando cinco degraus de modo que em cada degrau fique um rapaz e uma moças.
De quantas maneiras diferentes podemos arruar este grupo?
a)70400
b)1280
c)460800
d)332000
e)625
Bom fiz varias e varias tentativas e a primeira delas foi tentar utilizar a Permutação.
R e M / R e M / R e M / R e M / R e M
pemutei os cincos grupos, os rapazes e as moças, mas nao deu em nada.
Então gostaria de dicas ai valeu pessoal!
-

DanielRJ
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Sex Ago 20, 2010 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Neperiano » Sáb Out 30, 2010 21:24
Ola
Tentei fazer assim
São 5 lugares então 5 numeros
Emcima podem ser 10 pessoas
Depois 8
6
4
2
Porque sempre 2 vao ficando, entretanto a resposta tambem não fecha, talvez a questão esteja certa, de qualquer forma vou tentar de outra maneira
Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por 0 kelvin » Dom Out 31, 2010 17:50
Achei o problema interessante (IME 1971?) e vi duas respostas possíveis no google:
Tem dois raciocínios possíveis que chegam na resposta, coincidentemente é a alternativa com o maior número tambem:
Método 1: pegue um lugar e um grupo de 5 pessoas, de quantas maneiras podemos preencher um lugar tendo 5 escolhas possíveis? 5. Mas são dois lugares por degrau e dois grupos de 5 escolhas, então 5 * 5. E ainda duas formas de preencher os dois lugares, AB ou BA, então 5 * 5 * 2. Repita para mais um degrau, mas reduza o grupo de pessoas disponíveis para a escolha, pois uma escolha já foi feita, fica 4 * 4 * 2. No quinto degrau restará uma moça e um rapaz, 1 * 1 * 2. A expressão completa fica

. Que pode ser escrita tambem como

.
Método 2: imagine 5 cadeiras e 5 pessoas, de quantas maneiras podemos preencher as 5 cadeiras com 5 pessoas? Fatorial de 5. Agora dobre o problema, um grupo de 5 pessoas para uma fileira e outro grupo de 5 pessoas para outra fileira. Individualmente são dois 5!. O problema agora é visualizar duas fileiras de 5 cadeiras cada emparelhadas. Uma analogia que pode ser feita é assim, imagina cinco interruptores lado a lado, cada interruptor pode estar ligado ou desligado, assim como cada casal pode ser AB ou BA. Quantas combinações de ligado/desligado podem ser feitas com 5 interruptores lado a lado? Dá um total de 32. No final fica 5! * 5! * 32.
Fundamentalmente os dois métodos são iguais, mas o primeiro é mais manual e o segundo "agrupa" o problema em blocos.
É parecido com uma questão da
Fuvest 2008. A diferença é que na questão da fuvest puseram duas condicionais pra complicar um pouco mais

(mas repara que o enunciado já facilita um pouco ao ordenar os casos já do mais específico para o menos específico, se vc tentar resolver numa ordem diferente da que já foi dada, se enrola todo)
-
0 kelvin
- Usuário Parceiro

-
- Mensagens: 78
- Registrado em: Dom Out 31, 2010 16:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciencias atmosfericas
- Andamento: cursando
por DanielRJ » Dom Out 31, 2010 20:59
Bom questãozinha muito chata. eu entendimento foi esse.
1° em cada degrau eu posso

que me dará

.
2° posso permutar os 5 Rapazes nos degraus.
que me dará

3° posso permutar as 5 Moças nos degraus.
que me dará

4° e por fim perutar as pessoas dentro dos degraus.
que me dará

então eu terei:


e obtive isto.
-

DanielRJ
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Sex Ago 20, 2010 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por 0 kelvin » Seg Nov 01, 2010 13:02
1 - permutações de 5 raprazes e de 5 moças, 5! . 5!. Essa parte esta correta.
2 - em cada degrau duas pessoas, como são cinco degraus,

tambem esta correto.
3 - Mas as permutações de pessoas dentro dos degraus não fez sentido.
(escrevi uma besteira sobre permutações na vertical e horizontal)O terceiro 5! parece q vc se confundiu com permutações de degraus ou de casais. Mas aí é repetição a mais. Veja:
[_] x [_]
[_] x [_]
[_] x [_]
[_] x [_]
[_] x [_]
5! de um lado representa as permutações entre uma fileira de rapazes, o mesmo do outro lado para as moças. É aquele esquema q vc liga um elemento de um grupo a cada um do outro grupo e repete para todos os elementos, formando aquela visualização com um monte de linhas cruzadas.
Chamando os rapazes de ABCDE e as moças de 12345.
[A] x [1]
[B] x [2]
[C] x [3]
[D] x [4]
[E] x [5]
Vc pode inverter: A1 ou 1A. O terceiro fatorial de 5 parece q vc pensou em trocar a ordem dos casais de cima para baixo ou de baixo para cima. É um pouco difícil, mas explicaria assim: se vc pode começar a preencher os degraus começando por qualquer um, alem de escolher os rapazes e as moças em qualquer ordem que seja, então não há necessidade de calcular mais uma multiplicação, a permutação dos casais formados. O

representa exatamente as inversões da ordem letra x número por degrau. 2 por degrau, cinco degraus então 2 . 2 . 2 . 2 . 2.
-
0 kelvin
- Usuário Parceiro

-
- Mensagens: 78
- Registrado em: Dom Out 31, 2010 16:53
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciencias atmosfericas
- Andamento: cursando
por DanielRJ » Seg Nov 01, 2010 20:13
pow valeu mesmo deu para compreender bem.
-

DanielRJ
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Sex Ago 20, 2010 18:19
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Combinatória-analise combinatoria
por heloisacarvalho83 » Seg Fev 27, 2012 22:40
- 1 Respostas
- 2713 Exibições
- Última mensagem por Livia000

Qua Mai 23, 2012 00:26
Estatística
-
- combinatória
por Adilson » Sex Ago 28, 2009 13:50
- 1 Respostas
- 2022 Exibições
- Última mensagem por Molina

Sex Ago 28, 2009 21:19
Estatística
-
- Combinatória
por 2137RF » Sex Out 09, 2009 11:25
- 4 Respostas
- 3222 Exibições
- Última mensagem por shirata

Qui Nov 26, 2009 06:38
Estatística
-
- combinatória
por apoliveirarj » Dom Jul 25, 2010 16:50
- 2 Respostas
- 4728 Exibições
- Última mensagem por apoliveirarj

Qui Ago 05, 2010 19:27
Estatística
-
- Combinatória
por apoliveirarj » Sáb Ago 07, 2010 12:23
- 2 Respostas
- 2326 Exibições
- Última mensagem por apoliveirarj

Sex Ago 13, 2010 15:55
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.