• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação!! Por favor ajude

Inequação!! Por favor ajude

Mensagempor Zetsu PN » Seg Abr 02, 2012 23:50

Por favor, seja didático :)

"A solução da inequação \frac{{x}^{2} + 2x - 1}{{x}^{2} -1} \geq \frac{1}{x + 1} é:
Zetsu PN
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Seg Abr 02, 2012 22:06
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Inequação!! Por favor ajude

Mensagempor NMiguel » Ter Abr 03, 2012 07:26

A primeira coisa a fazer para resolver esta inequação é reduzir ambos os membros ao mesmo denominador.

Como x^{2}-1 = (x-1)(x+1), basta transformarmos o denominador do segundo membro.

Assim, temos: \frac{{x}^{2} + 2x - 1}{{x}^{2} -1} \geq \frac{1}{x + 1} \Leftrightarrow  \frac{{x}^{2} + 2x - 1}{{x}^{2} -1} \geq \frac{1}{x + 1} \cdot \frac{x-1}{x - 1}

Calculando o produto no segundo membro, ficamos com: \frac{{x}^{2} + 2x - 1}{{x}^{2} -1} \geq \frac{x-1}{{x}^{2} -1}

Em seguida, devemos passar todos os termos para o primeiro membro: \frac{{x}^{2} + 2x - 1}{{x}^{2} -1}- \frac{x-1}{{x}^{2} -1} \geq 0

E calculamos esta diferença: \frac{{x}^{2} + x }{{x}^{2} -1} \geq 0

Como o numerador e o denominador têm um fator comum, podemos transformar esta inequação da seguinte forma:

\frac{{x}^{2} + x }{{x}^{2} -1} \geq 0  \Leftrightarrow  \frac{x + 1 }{x+1} \cdot \frac{ x }{x-1} \geq 0  \Leftrightarrow \frac{ x }{x-1} \geq 0 \wedge  x\neq -1

Como tanto o numerador como o denominador representam retas crescentes, a fração é positiva antes da raiz do numerador e depois da raiz do denominador. Assim, temos \frac{ x }{x-1} \geq 0 \wedge  x\neq -1 \Leftrightarrow x\in \left ((-\infty ,0] \cup [1,+\infty )  \right )\setminus \left \{ -1 \right \}

Espero ter ajudado. Se não perceber algum dos passos da resolução, tentarei explicar melhor.
NMiguel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Ter Abr 19, 2011 17:09
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59