por Zetsu PN » Seg Abr 02, 2012 23:50
Por favor, seja didático
"A solução da inequação

é:
-
Zetsu PN
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Abr 02, 2012 22:06
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por NMiguel » Ter Abr 03, 2012 07:26
A primeira coisa a fazer para resolver esta inequação é reduzir ambos os membros ao mesmo denominador.
Como

, basta transformarmos o denominador do segundo membro.
Assim, temos:

Calculando o produto no segundo membro, ficamos com:

Em seguida, devemos passar todos os termos para o primeiro membro:

E calculamos esta diferença:

Como o numerador e o denominador têm um fator comum, podemos transformar esta inequação da seguinte forma:

Como tanto o numerador como o denominador representam retas crescentes, a fração é positiva antes da raiz do numerador e depois da raiz do denominador. Assim, temos
![\frac{ x }{x-1} \geq 0 \wedge x\neq -1 \Leftrightarrow x\in \left ((-\infty ,0] \cup [1,+\infty ) \right )\setminus \left \{ -1 \right \} \frac{ x }{x-1} \geq 0 \wedge x\neq -1 \Leftrightarrow x\in \left ((-\infty ,0] \cup [1,+\infty ) \right )\setminus \left \{ -1 \right \}](/latexrender/pictures/7f53c2dd04331aa446df59ea6fa26298.png)
Espero ter ajudado. Se não perceber algum dos passos da resolução, tentarei explicar melhor.
-
NMiguel
- Usuário Dedicado

-
- Mensagens: 34
- Registrado em: Ter Abr 19, 2011 17:09
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
-
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Ajude em Inequação com duas frações
por farinha99 » Ter Mar 17, 2015 16:01
- 0 Respostas
- 1052 Exibições
- Última mensagem por farinha99

Ter Mar 17, 2015 16:01
Inequações
-
- [logaritmo] Ajude-me, por favor.
por Cleyson007 » Sáb Mai 17, 2008 23:20
- 4 Respostas
- 12669 Exibições
- Última mensagem por Neperiano

Qui Jun 19, 2008 16:34
Logaritmos
-
- [determinantes] Por favor me ajude!!!
por Cleyson007 » Dom Jul 13, 2008 09:11
- 3 Respostas
- 7064 Exibições
- Última mensagem por admin

Dom Jul 13, 2008 19:46
Matrizes e Determinantes
-
- [logaritmo] Ajude-me, por favor.
por Thayane Suzuki » Ter Ago 19, 2008 18:56
- 4 Respostas
- 6363 Exibições
- Última mensagem por admin

Sex Ago 22, 2008 00:38
Logaritmos
-
- me ajude urgente...por favor
por Leandrin » Qua Nov 10, 2010 14:06
- 1 Respostas
- 2033 Exibições
- Última mensagem por Neperiano

Sex Out 21, 2011 15:41
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.