• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação

Equação

Mensagempor nathyn » Qua Jan 25, 2012 19:20

Oie, sei que é meio besta a questão, mas ta ae:
{x}^{\sqrt[2]{x}}=\sqrt[2]{{x}^{x}}

Eu tentei fazer elevando ambos os lados ao quadrado, e assim fazendo encontrei:
{x}^{\sqrt[2]{2x}}= {x}^{x}

Sei q está errado pois achei como resposta x=2, mas a resposta do livro é: 0,1 e 4

Me ajudem ae por favor... Brigada.
nathyn
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Qua Nov 16, 2011 14:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Equação

Mensagempor ant_dii » Qua Jan 25, 2012 20:26

Olha, eu encontrei a as ráizes x=4 e x=0, mas não encontrei a raíz x=1 com manipulação algébrica...

Fiz o seguinte
x^{\sqrt{x}}=\sqrt{x^x} \Rightarrow x^{\sqrt{x}}=(x^x)^{\frac{1}{2}}=x^{\frac{x}{2}} \Rightarrow \\ \\ \Rightarrow \sqrt{x}=\frac{x}{2} \Rightarrow x=\frac{x^2}{4} \Rightarrow 4x=x^2 \Rightarrow x=0 \quad \mbox{ou} \quad x=4

Mas a raíz x=1 é óbvia...
O problema é quando x=0. Provavelmente o seu livro esta errado, pois não há definição (pelo menos que seja trivial para o ensino médio) para 0^0.
Só os loucos sabem...
ant_dii
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 129
Registrado em: Qua Jun 29, 2011 19:46
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: formado

Re: Equação

Mensagempor nathyn » Qui Jan 26, 2012 12:34

Pooo brigadão, o livro é aquele fundamentos da matematica elementar, mas o q mais importava mesmo
era a extração da raiz que eu não tava sabendo fazer certo.
Muito obrigada ;D
nathyn
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Qua Nov 16, 2011 14:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}