• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Sistema de equações] duvidas

[Sistema de equações] duvidas

Mensagempor DELTAPI » Sex Set 16, 2011 14:56

Alguem poderia me auxiliar a montar este sistema de equações:

Joana foi à feira levando certa quantia em dinheiro. Na 1.ª banca, comprou legumes e gastou 1/4 dessa quantia. Na 2.ª banca, comprou verduras e gastou 2/5 do valor gasto na 1.ª banca. Na 3.ª banca, comprou frutas e gastou R$ 15,50. Sabendo-se que da quantia inicial restaram R$ 10,50, conclui-se que na compra de verduras ela gastou?

x= valor de dinheiro qeu levou

1ª Banca = x-(1/4x)
2ª Banca = 2/5 (x -1/4x)
3ª banca = R$15,50
sobrou RS10,50
Montei a equação da seguinte forma mas não deu o resultado proposto: alguem pode indicar onde eu errei?
x-(1/4x)-2/5(x-1/4)-15,50=10,50
DELTAPI
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Set 06, 2011 08:03
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Sistema de equações] duvidas

Mensagempor Neperiano » Sex Set 16, 2011 15:25

Ola

Transforme esse 1/4 em 0,25

Logo na 1 banca gastou 0,25
Na 2 banca gastou 2/5 de 0,25 que é 0,1 (só fazer 0,25 vezes 2 e dividido por 5)
Na 3 banca gastou 15,50

Sobrou 10,50 de tudo entao

Ela tinha 15,50+10,50=26 reais mais 0,35

Então

26 - 1
x - 0,35

Logo 9,1
Então ela tinha 26+9,1= 35,1 reais

Acho que é isso

Atenciosamente
Sómente os mortos conhecem o fim da guerra
"Platão"
Avatar do usuário
Neperiano
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 960
Registrado em: Seg Jun 16, 2008 17:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Produção
Andamento: cursando

Re: [Sistema de equações] duvidas

Mensagempor MarceloFantini » Sex Set 16, 2011 17:20

Seja Q a quantia inicial. Primeiro, gastou \frac{Q}{4}; depois, gastou dois quintos do que gastou primeiro, logo \frac{2}{5} \cdot \frac{Q}{4} = \frac{Q}{10}; por último, gastou 15,50 e sobrou 10,50. Equacionando:

Q - \frac{Q}{4} - \frac{Q}{10} - 15,50 = 10,50 \implies 20Q - 5Q - 2Q = 26 \cdot 20 \implies

\implies 13Q = 26 \cdot 20 \implies Q = 40
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Sistema de equações] duvidas

Mensagempor DELTAPI » Sáb Set 17, 2011 10:12

PESSOAL, MUITO OBRIGADO.
NA SEGUNDA BANCA ELE GASTOU R$4,00 ( Q/10 =>R$4,00).
CASO CONHEÇAM ALGUM LIVRO QUE ENSINA COMO MONTAR AS EQUAÇÕES, FAVOR ME INDICAR.
DELTAPI
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Set 06, 2011 08:03
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?