• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação Fuvest

Inequação Fuvest

Mensagempor wanessa » Ter Set 13, 2011 22:02

Olá pessoas! Apesar de a questão ser um logaritmo eu empaquei na inequação :S

O conjunto dos números reais x que satisfazem a inequação log2(2x + 5) - log2(3x -1) > 1 é o intervalo?
Resp: ]1/3, 7,4[

Minha resolução:
log2(2x + 5) - log2(3x -1) > 1 //---- subtração de logaritmos de bases iguais e a base 2 multiplica o num 1, então;
\left(\frac{2x+5}{3x-1} \right) > 2
Como resolver a inequação acima?
wanessa
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sáb Mai 07, 2011 15:33
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Inequação Fuvest

Mensagempor MarceloFantini » Ter Set 13, 2011 22:27

Lembre-se das condições de existência: 2x+5 > 0 e 3x-1 > 0 e daí x > \frac{-5}{2} e x > \frac{1}{3}, portanto basta consider apenas o segundo caso. Agora, considere: \log_2 \left( \frac{2x+5}{3x-1} \right) -1 > 0 \implies \log_2 \left( \frac{2x+5}{3x-1} \right) - \log_2 2 > 0

\implies \log_2 \left( \frac{2x+5}{2(3x-1)} \right) > 0.

Daí, segue que \frac{2x+5}{2(3x-1} > 1 \implies \frac{2x+5}{2(3x-1)} - 1 > 0 \implies \frac{2x+5 -2(3x-1)}{2(3x-1)} > 0 \implies

\implies \frac{-4x+7}{3x-1} > 0

Agora é só analisar o sinal disto, lembrando das condições de existência.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.