• Anúncio Global
    Respostas
    Exibições
    Última mensagem

simplificação de equações do segundo grau

simplificação de equações do segundo grau

Mensagempor damasobh » Dom Mar 27, 2011 23:44

preciso de ajuda para resolver a seguinte equação:

simplifique a equação \frac{3{x}^{2}- 2x -1}{2{x}^{2}- 3x + 1} sendo x \neq 0
damasobh
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mar 27, 2011 23:29
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: contabilidade
Andamento: formado

Re: simplificação de equações do segundo grau

Mensagempor MarceloFantini » Seg Mar 28, 2011 01:13

Encontre as raízes, fatore e veja se há simplificações.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: simplificação de equações do segundo grau

Mensagempor SidneySantos » Qua Abr 20, 2011 08:26

{x}^{2}-2x-1
{x}_{1}=1/2
{x}_{2}=-1/6
{x}^{2}-2x-1 = \left(x-1/2 \right)\left(x+1/6 \right)


2{x}^{2}-3x+1
{x}_{1}=1
{x}_{2}=1/2
2{x}^{2}-3x+1 = \left(x-1 \right)\left(x-1/2 \right)


\frac{3{x}^{2}- 2x -1}{2{x}^{2}- 3x + 1}=\frac{\left(x-1/2 \right)\left(x+1/6 \right)}{\left(x-1 \right)\left(x-1/2 \right)}=\frac{\left(x+1/6 \right)}{\left(x-1 \right)}, sendo x\neq1
Um forte abraço e bom estudo!!!
SidneySantos
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Qua Abr 20, 2011 07:47
Localização: Belém - Pará
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Educaçao Matemática
Andamento: cursando

Re: simplificação de equações do segundo grau

Mensagempor MarceloFantini » Qua Abr 20, 2011 13:10

Você quis dizer x \neq \frac{1}{2}, acredito.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}