• Anúncio Global
    Respostas
    Exibições
    Última mensagem

me ajudem ai !!

me ajudem ai !!

Mensagempor weverton » Ter Jun 15, 2010 23:45

O termo (k,2,k+1) é uma solução da equação linear 4x+5y-3z=10. Determine k

quem souber e puder me ajudar me explique passo a passo como achar o (K)!
weverton
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 62
Registrado em: Sex Mai 14, 2010 01:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: enfermagem
Andamento: formado

Re: me ajudem ai !!

Mensagempor Mathmatematica » Qua Jun 16, 2010 01:18

Oi Weverton!

Se o termo (k,2,k+1) é solução da equação 4x+5y-3z=10 então x=k, \ y=2 \ e \ z=k+1. Fazendo a substituição temos que:

4k+5.2-3(k+1)=10\Longrightarrow 4k+10-3k-3=10\Longrightarrow k=3.

Logo, k=3.

Espero ter ajudado!
Mathmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Sex Jun 04, 2010 23:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}