por Douglaspimentel » Qui Abr 15, 2010 18:39
Considere o seguinte sistema de equações no conjunto dos
números reais IR , nas variáveis x, y e z , no qual k é
um parâmetro:
(k-2)x + y + ( k-2)z =4
x+ (k-2)y +z =-7
x+ y + (k-2)z =10
O conjunto que representa os valores de k para os quais o
sistema possua uma única solução é dado por:
A) IR - {1,3} (C) {1,3}
B) IR - {-1,1} (D) {-1,1}
-
Douglaspimentel
- Usuário Ativo

-
- Mensagens: 19
- Registrado em: Sex Mar 05, 2010 12:42
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: nada
- Andamento: cursando
por Elcioschin » Qui Abr 15, 2010 20:14
(k-2)*x + y + ( k-2)*z = 4
x + (k-2)*y + z = -7
x + y + (k-2)*z = 10
INvertendo a ordem
x + (k-2)*y + z = -7
x + y + (k-2)*z = 10
(k-2)*x + y + ( k-2)*z = 4
Fazendo por escalonamento:
1 ..... k-2 ...... 1 ........ - 7
1 ...... 1 ...... k-2 ....... 10 ----> II - I
k-2 ... 1 ....... k-2 ....... 4 -----> III - (k-2)*I
1 ..... k-2 ...... 1 ........ - 7
0 ......3-k ..... k-3 ....... 17 ---->
0 .. 1- (k-2)² .. 0 ......... 4 + 7*(k-2)
[1 - (k-2)²]*y = 4 + t*(k-2) ----> (4k - k² - 3)*y = 7*k - 10 -----> y = (7*k - 10)/(4k - k² - 3)
Para existir uma única solução -----> F = -k² + 4k - 3 <> 0 -----> <> significa "diferente de"
Raízes desta função F ----> - k² + 4k - 3 = 0 ----> k = 1 e k = 3
A função F é uma parábola com a concavidade voltada para baixo, logo para a função não ser negativa 1 < k < 3
Alternativa C
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Sistemas
por Jansen » Dom Mai 10, 2009 00:01
- 5 Respostas
- 4506 Exibições
- Última mensagem por Molina

Seg Mai 11, 2009 04:36
Sistemas de Equações
-
- sistemas
por Magda » Sex Jun 19, 2009 18:37
- 5 Respostas
- 3563 Exibições
- Última mensagem por Magda

Sex Ago 07, 2009 19:49
Sistemas de Equações
-
- Sistemas...
por GABRIELA » Ter Set 08, 2009 21:41
- 6 Respostas
- 3342 Exibições
- Última mensagem por GABRIELA

Qua Set 09, 2009 18:52
Matrizes e Determinantes
-
- Sistemas
por GABRIELA » Qua Set 09, 2009 18:59
- 2 Respostas
- 1624 Exibições
- Última mensagem por GABRIELA

Qui Set 10, 2009 17:08
Sistemas de Equações
-
- Sistemas
por GABRIELA » Seg Set 21, 2009 17:25
- 4 Respostas
- 2270 Exibições
- Última mensagem por GABRIELA

Ter Set 22, 2009 09:45
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Simplifique a expressão com radicais duplos
Autor:
Balanar - Seg Ago 09, 2010 04:01
Simplifique a expressão com radicais duplos abaixo:
Resposta:
Dica:
(dica : igualar a expressão a

e elevar ao quadrado os dois lados)
Assunto:
Simplifique a expressão com radicais duplos
Autor:
MarceloFantini - Qua Ago 11, 2010 05:46
É só fazer a dica.
Assunto:
Simplifique a expressão com radicais duplos
Autor:
Soprano - Sex Mar 04, 2016 09:49
Olá,
O resultado é igual a 1, certo?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.