• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistemas

Sistemas

Mensagempor Douglaspimentel » Qui Abr 15, 2010 18:39

Considere o seguinte sistema de equações no conjunto dos
números reais IR , nas variáveis x, y e z , no qual k é
um parâmetro:
(k-2)x + y + ( k-2)z =4
x+ (k-2)y +z =-7
x+ y + (k-2)z =10

O conjunto que representa os valores de k para os quais o
sistema possua uma única solução é dado por:
A) IR - {1,3} (C) {1,3}
B) IR - {-1,1} (D) {-1,1}
Douglaspimentel
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Sex Mar 05, 2010 12:42
Formação Escolar: ENSINO MÉDIO
Área/Curso: nada
Andamento: cursando

Re: Sistemas

Mensagempor Elcioschin » Qui Abr 15, 2010 20:14

(k-2)*x + y + ( k-2)*z = 4
x + (k-2)*y + z = -7
x + y + (k-2)*z = 10

INvertendo a ordem

x + (k-2)*y + z = -7
x + y + (k-2)*z = 10
(k-2)*x + y + ( k-2)*z = 4

Fazendo por escalonamento:

1 ..... k-2 ...... 1 ........ - 7
1 ...... 1 ...... k-2 ....... 10 ----> II - I
k-2 ... 1 ....... k-2 ....... 4 -----> III - (k-2)*I

1 ..... k-2 ...... 1 ........ - 7
0 ......3-k ..... k-3 ....... 17 ---->
0 .. 1- (k-2)² .. 0 ......... 4 + 7*(k-2)

[1 - (k-2)²]*y = 4 + t*(k-2) ----> (4k - k² - 3)*y = 7*k - 10 -----> y = (7*k - 10)/(4k - k² - 3)

Para existir uma única solução -----> F = -k² + 4k - 3 <> 0 -----> <> significa "diferente de"

Raízes desta função F ----> - k² + 4k - 3 = 0 ----> k = 1 e k = 3

A função F é uma parábola com a concavidade voltada para baixo, logo para a função não ser negativa 1 < k < 3

Alternativa C
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}