• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fuvest-SP

Fuvest-SP

Mensagempor luanxd » Dom Fev 07, 2010 20:16

Dada a equação
\frac{2}{x^2-1}+\frac{1}{x+1}=-1, então:
V=(1)
V=(-1,0,1)
V=(-1,1)
V=(-1,1)
V=(0)


Por favor me ajudem a resolver está equação.
luanxd
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Seg Jan 25, 2010 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Fuvest-SP

Mensagempor Molina » Seg Fev 08, 2010 15:58

luanxd escreveu:Dada a equação
\frac{2}{x^2-1}+\frac{1}{x+1}=-1, então:
V=(1)
V=(-1,0,1)
V=(-1,1)
V=(-1,1)
V=(0)


Por favor me ajudem a resolver está equação.

Boa tarde,

\frac{2}{x^2-1}+\frac{1}{x+1}=-1

\frac{2}{(x+1)(x-1)}+\frac{1}{x+1}=-1

\frac{2+(x-1)=-(x+1)(x-1)}{(x+1)(x-1)}

2+x-1=-x^2+1

x^2+x=0

x(x+1)=0

x'=0
x''=-1

0 e -1 seriam as soluções da equação. Porém, temos que -1 não pode ser solução do sistema, já que substituindo-o os denominadores da fração ficam igual a zero (o que não pode).

Resposta: V=(0)

Qualquer dúvida em alguma passagem, informe!

Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Fuvest-SP

Mensagempor luanxd » Seg Fev 08, 2010 18:51

Ola Molina obrigado pela ajuda, mas eu não entendi muito bem o finalzinho.

x^2+x=0

x(x+1)=0

Como você acho o X1 eo X2?


Obrigado pela atenção.
luanxd
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Seg Jan 25, 2010 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Fuvest-SP

Mensagempor Molina » Seg Fev 08, 2010 18:59

luanxd escreveu:Ola Molina obrigado pela ajuda, mas eu não entendi muito bem o finalzinho.

x^2+x=0

x(x+1)=0

Como você acho o X1 eo X2?


Obrigado pela atenção.


Chegamos até aqui: x^2+x=0

Agora vou fatorar esse termo, colocando x em evidência:

x(x+1)=0

Temos dois "números" x e x+1 que multiplicados dão zero. Como o produto é 0, ou o primeiro é igual a 0 ou o segundo é igual a 0. E foi isso que eu fiz:

x=0 (ou seja, o primeiro termo desse produto é igual a zero)
Note que substituindo 0 por x a equação é válida, pois ficamos com 0*(0+1)=0*1=0

E fazemos a mesma coisa com o segundo termo, igualando-o a zero:
(x+1)=0 \Rightarrow x=-1

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Fuvest-SP

Mensagempor luanxd » Ter Fev 09, 2010 11:06

Obrigado!
luanxd
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Seg Jan 25, 2010 23:02
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59