• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Simplicando expressões

Simplicando expressões

Mensagempor Florisbela » Dom Mai 23, 2010 19:48

Alguém pode me ajudar com os exercícios abaixo:

Simplifique as seguintes expressões:

a) ({a}^{2}b+a{b}^{2})\frac{\frac{1}{{a}^{3}}-\frac{1}{{b}^{3}}}{\frac{1}{{a}^{2}}-\frac{1}{{b}^{2}}}

b)\frac{\frac{m}{m+n}+\frac{n}{m-n}}   {\frac{n}{m+n}-\frac{m}{m-n}}+\frac{1+\frac{m}{n}}{1+\frac{{(m-n)}^{2}}{4mn}}*(1+\frac{n}{m})
Florisbela
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Mai 23, 2010 19:07
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão Ambiental
Andamento: cursando

Re: Simplicando expressões

Mensagempor DanielFerreira » Ter Jun 08, 2010 18:38

a)
\frac{\frac{1}{a^3} - \frac{1}{b^3}}{\frac{1}{a^2} - \frac{1}{b^2}} =

\frac{\frac{b^3 - a^3}{a^3b^3}}{\frac{b^2 - a^2}{a^2b^2}} =

\frac{\frac{(b - a)(b^2 + ab + a^2)}{a^3b^3}}{\frac{(b - a)(b + a)}{a^2b^2}} =

{\frac{(b - a)(b^2 + ab + a^2)}{a^3b^3}} * {\frac{a^2b^2}{(b - a)(b + a)} =

{\frac{(b^2 + ab + a^2)}{ab}} * {\frac{1}{(b + a)} =

\frac{b^2 + ab + a^2}{ab(b + a)} =


concluindo...
(a^2b + ab^2) * \frac{(b^2 + ab + a^2)}{ab(b + a)} =

ab(a + b) * \frac{(b^2 + ab + a^2)}{ab(b + a)} =

b^2 + ab + a^2
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.