• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação do 2º grau] equações fracionárias

[Equação do 2º grau] equações fracionárias

Mensagempor smlspirit » Sex Jun 15, 2012 01:42

Não consigo desenvolver o seguinte problema:
Dividindo um número de dois algarismo, cuja soma é 9, pelo quociente da divisão do algarismo das unidades pelo algarismo das dezenas, obtém-se o quociente 18. Qual é esse número?
Gostaria de uma ajuda para compreender o problema e montar a equação.
Obrigado
smlspirit
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sex Mai 18, 2012 01:00
Formação Escolar: GRADUAÇÃO
Área/Curso: TI
Andamento: formado

Re: [Equação do 2º grau] equações fracionárias

Mensagempor Russman » Sex Jun 15, 2012 04:33

smlspirit escreveu:Não consigo desenvolver o seguinte problema:
Dividindo um número de dois algarismo, cuja soma é 9, pelo quociente da divisão do algarismo das unidades pelo algarismo das dezenas, obtém-se o quociente 18. Qual é esse número?
Gostaria de uma ajuda para compreender o problema e montar a equação.
Obrigado


Seja esse número x. Como ele tem apenas dois algarismos, sejam eles a e b, podemos escrever que x=10a+b. Concorda?

Assim, vamos ao enunciado! Ele nos dá duas informações:

\left\{\begin{matrix}
\frac{10a+b}{(\frac{b}{a})}=18 \\ 
a+b=9
\end{matrix}\right.

Eu acho interessante fato de que se a soma dos algarismos de um número é 9 então este é múltiplo de 9. Veja que isto nos dá apenas algumas combinações específicas para (a,b). Assim, podíamos fazer tentativas e verificar qual par satisfaz a equação 1. Maaaaaas, vamos recorrer a boa e confiável álgebra.

Da equação 1, podemos desenvolver que

\frac{10a+b}{(\frac{b}{a})}=18\Rightarrow 10a + b = \frac{18b}{a} \Rightarrow 10a^{2}+ab = 18b\Rightarrow 10a^{2}+b(a-18)=0.

Pela equação 2 sabemos que a e b se relacionam seguindo a+b=9. Portanto, se tomarmos b=9-a e substituirmos na equação acima teremos uma equação de 2° grau na incógnita a!

10a^{2}+b(a-18)=0\Rightarrow 10a^{2}+(9-a)(a-18)=0\Rightarrow 10a^{2}-162+27a-a^{2}=0\Rightarrow 9a^{2}+27a-162=0\Rightarrow \left\{\begin{matrix}
a_{1}=3\\ 
a_{2}=-6
\end{matrix}\right.

Como a deve ser um algarismo, a única solução válida é a=3. Agora, como eu sei que 4\times9=36 é fácil imaginar que b=6, pelo argumento que eu dei acima. Claro, b=9-a=9-3=6.

Portanto, o seu número é 36!
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?