por Fiel8 » Sex Jul 10, 2009 19:19
Solucione as seguintes inequaçoes do 2º grau: x elevado a 2 +2x-3>0,-x elevado a 2 +10x-25<0 ,S={x e |R/,S={x e |R/ Vc entende ... E tem isso : Construir o grafico completo das funçoes do 2ºgrau abaixo, no papel quadriculado,fornecendo:raizes,vertice,dominio,imagem da funçao e tabela quando necessario:y=-x elevado a 2+2x+3,y=x elevado a 2 - 4x -5 desculpe mestre mas tenho dificuldades em usar o editor de texto ...Vc entende vc é mestre mais uma agradeçao muito pela ajuda...
-
Fiel8
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Ter Jun 16, 2009 17:21
- Formação Escolar: EJA
- Andamento: cursando
por Molina » Qua Jul 15, 2009 15:44
Fiel8 escreveu:Solucione as seguintes inequaçoes do 2º grau: x elevado a 2 +2x-3>0,-x elevado a 2 +10x-25<0 ,S={x e |R/,S={x e |R/ Vc entende ... E tem isso : Construir o grafico completo das funçoes do 2ºgrau abaixo, no papel quadriculado,fornecendo:raizes,vertice,dominio,imagem da funçao e tabela quando necessario:y=-x elevado a 2+2x+3,y=x elevado a 2 - 4x -5 desculpe mestre mas tenho dificuldades em usar o editor de texto ...Vc entende vc é mestre mais uma agradeçao muito pela ajuda...

Resolvendo Bháskara ou Soma e Produto chegamos que as raízes são:
-3 e
1.
Como na inequação
a é igual a 1, ou seja, positivo, temos que o gráfico é côncavo para cima.
Como na inequação queremos os valores maiores do que zero, temos que esses valores são do intervalo

Isso significa que qualquer neste intevalo que você substituir por x na inequação

o valor será maior do que zero.
Preciso saber se você entendeu até aqui para poder fazer as outras questões.
Abraços,

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Inequações do 1º grau
por anneliesero » Seg Jul 22, 2013 12:28
- 1 Respostas
- 1228 Exibições
- Última mensagem por MateusL

Seg Jul 22, 2013 16:04
Álgebra Elementar
-
- [Inequações do 1° Grau] Dúvidas
por lcmschilling » Seg Jun 23, 2014 22:49
- 3 Respostas
- 3815 Exibições
- Última mensagem por e8group

Ter Jun 24, 2014 01:23
Inequações
-
- Inequações
por Bruno 888 » Qua Set 24, 2008 20:36
- 1 Respostas
- 4016 Exibições
- Última mensagem por admin

Ter Set 30, 2008 17:09
Inequações
-
- Inequações
por Rose » Seg Nov 24, 2008 22:44
- 2 Respostas
- 3517 Exibições
- Última mensagem por Rose

Qua Nov 26, 2008 08:18
Inequações
-
- Inequações
por cristina » Seg Set 07, 2009 01:46
- 2 Respostas
- 2723 Exibições
- Última mensagem por cristina

Seg Set 07, 2009 20:55
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.