por acalves » Sáb Abr 07, 2012 01:39
Em uma biblioteca escolar, uma pilha de 50 livros tinha 1,8 cm de altura e era formada por livros paradidáticos iguais, de 3 cm de espessura ,e livros didáticos iguais, de 6 cm de espessura.A bibliotecária retirou metade dos livros didáticos da pilha para arrumá-los numa estante e assim a altura da pilha foi.
resposta 30 cm
-
acalves
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Seg Abr 02, 2012 23:31
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por MarceloFantini » Sáb Abr 07, 2012 18:27
Alves, por favor confira o enunciado, pois este trecho não parece coerente:
[...], uma pilha de 50 livros tinha 1,8 cm de altura [...]
Veja as regras do fórum também, em especial as regras números 1 e 2.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Guill » Dom Abr 08, 2012 15:47
A pilha de livros tem, provavelmente, 1,8 m = 180 cm de altura. Podemos resolver facilmente esse problema usando sistemas de equações, mas, ao invés disso, usaremos a imaginação:
Imagine que você tenha uma pilha de 50 livros. Sabe-se que existem livros paradidático (3 cm de espessura) e livros didáticos (6 cm de espessura). Imagine que essa pilha seja toda de livros paradidáticos. Como cada livro tem 3 cm de espessura, a altura da pilha seria de 150 cm, o que é falso pois faltam 30 cm para o valor verdadeiro.
Agora, troque o livro de cima por um livro didático, de 6cm de espessura. Ao tirar o paradidático, reduzimos em 3cm a altura da pilha. Mas ao colocar o didático, aumentamos em 6 cm, o que nos dá, no fim das contas, uma aumento de 3 cm na pilha de livros. Cada vez que trocarmos um paradidático por um didático, aumentaremos 3 cm. Mas precisamos aumentar 30 cm, o que nos obrica a retirar 10 livros paradidáticos e colocar 10 didáticos:
PILHA = {40 paradidáticos e 10 didáticos}
Se tirarmos metade dos paradidáticos, teremos 30 livros na pilha.
-

Guill
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Dom Jul 03, 2011 17:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Sistemas de Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Volume] Volume de caixa para carrinho de mão
por MateusDantas1 » Seg Nov 05, 2012 20:12
- 0 Respostas
- 2732 Exibições
- Última mensagem por MateusDantas1

Seg Nov 05, 2012 20:12
Geometria Espacial
-
- [Cálculo do Volume] Variação do volume em porcentagem
por Douglaasag » Sex Out 10, 2014 09:23
- 0 Respostas
- 4479 Exibições
- Última mensagem por Douglaasag

Sex Out 10, 2014 09:23
Cálculo: Limites, Derivadas e Integrais
-
- volume da planta de uma piscina [volume]
por moraesfran » Ter Nov 15, 2011 21:38
- 0 Respostas
- 2093 Exibições
- Última mensagem por moraesfran

Ter Nov 15, 2011 21:38
Trigonometria
-
- Volume
por Pri Ferreira » Qua Mar 21, 2012 13:22
- 1 Respostas
- 1659 Exibições
- Última mensagem por LuizAquino

Sáb Mar 31, 2012 18:46
Geometria Espacial
-
- Volume
por sergioh » Dom Abr 07, 2013 16:01
- 2 Respostas
- 1889 Exibições
- Última mensagem por sergioh

Ter Abr 09, 2013 21:50
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.