• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação...

Equação...

Mensagempor nathyn » Seg Jan 30, 2012 15:18

oii, to meia enrolada na resolução dessas equações, nao sei se estou fazendo certo ou se tem alguma maneira mais simples de resolver, se alguem puder ajudar, por favor...

1ª) \frac{1}{\sqrt[]{x+\sqrt[]{{x}^{2}-1}}} + \frac{1}{\sqrt[]{x-\sqrt[]{{x}^{2}-1}}} = \sqrt[]{2({x}^{2}+1)}

Eu fiz o mmc e encontrei:

\frac{\sqrt[]{x-\sqrt[]{{x}^{2}-1}} + \sqrt[]{x+\sqrt[]{{x}^{2}-1}}}{x-\sqrt[]{{x}^{2}-1}} = \frac{x - \sqrt[]{{2x}^{4}-2}}{x-\sqrt[]{{x}^{2}-1}}

Elevei ambos os lados ao quadrado e ficou...

{x-\sqrt[]{{x}^{2}-1} + 2x-2 \sqrt[]{{x}^{2}-1} + {x+\sqrt[]{{x}^{2}-1} = {x}^{2}+{2x}^{4}-2-2x\sqrt[]{{2x}^{4}-2} \rightarrow

{2x + 2x-2 \sqrt[]{{x}^{2}-1} = {x}^{2}+{2x}^{4}-2-2x\sqrt[]{{2x}^{4}-2}

Daí então não sei mais como fazer... =/

2ª) \frac{x + \sqrt[]{3}}{\sqrt[]{x} + \sqrt[]{x+\sqrt[]{3}}} + \frac{x - \sqrt[]{3}}{\sqrt[]{x} - \sqrt[]{x-\sqrt[]{3}}}= \sqrt[]{x}

Tirando o mmc encontrei:

\frac{-x\sqrt[]{x-\sqrt[]{3}} -\sqrt[]{3x - \sqrt[]{3}} + x\sqrt[]{x} + x\sqrt[]{x + \sqrt[]{3}} - \sqrt[]{3x + \sqrt[]{3}} = -\sqrt[]{{x}^{3} - 3x}}{x - \sqrt[]{{x}^{2} - 3}}

nem sei se está certo, mas...

Me ajudem ae por favor...
nathyn
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Qua Nov 16, 2011 14:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Equação...

Mensagempor LuizAquino » Seg Jan 30, 2012 17:16

nathyn escreveu:1ª) \frac{1}{\sqrt{x+\sqrt{{x}^{2}-1}}} + \frac{1}{\sqrt{x-\sqrt{{x}^{2}-1}}} = \sqrt{2({x}^{2}+1)}

Eu fiz o mmc e encontrei:

\frac{\sqrt{x-\sqrt{{x}^{2}-1}} + \sqrt{x+\sqrt{{x}^{2}-1}}}{x-\sqrt{{x}^{2}-1}} = \frac{x - \sqrt{{2x}^{4}-2}}{x-\sqrt{{x}^{2}-1}}


Você já começou errando o mmc. O correto seria:

\frac{\sqrt{x-\sqrt{{x}^{2}-1}} + \sqrt{x+\sqrt{{x}^{2}-1}}}{\sqrt{x+\sqrt{{x}^{2}-1}}\sqrt{x-\sqrt{{x}^{2}-1}}}= \sqrt{2({x}^{2}+1)}

Desenvolvendo o denominador, você poderia escrever:

\frac{\sqrt{x-\sqrt{{x}^{2}-1}} + \sqrt{x+\sqrt{{x}^{2}-1}}}{\sqrt{\left(x+\sqrt{{x}^{2}-1}\right)\left(x-\sqrt{{x}^{2}-1}\right)}}= \sqrt{2({x}^{2}+1)}

\frac{\sqrt{x-\sqrt{{x}^{2}-1}} + \sqrt{x+\sqrt{{x}^{2}-1}}}{\sqrt{x^2 - \left(\sqrt{{x}^{2}-1}\right)^2}}= \sqrt{2({x}^{2}+1)}

\frac{\sqrt{x-\sqrt{{x}^{2}-1}} + \sqrt{x+\sqrt{{x}^{2}-1}}}{\sqrt{1}}= \sqrt{2({x}^{2}+1)}

\sqrt{x-\sqrt{{x}^{2}-1}} + \sqrt{x+\sqrt{{x}^{2}-1}}= \sqrt{2({x}^{2}+1)}

Agora tente terminar.

nathyn escreveu:2ª) \frac{x + \sqrt{3}}{\sqrt{x} + \sqrt{x+\sqrt{3}}} + \frac{x - \sqrt{3}}{\sqrt{x} - \sqrt{x-\sqrt{3}}}= \sqrt{x}

Tirando o mmc encontrei:

\frac{-x\sqrt{x-\sqrt{3}} -\sqrt{3x - \sqrt{3}} + x\sqrt{x} + x\sqrt{x + \sqrt{3}} - \sqrt{3x + \sqrt{3}} = -\sqrt{{x}^{3} - 3x}}{x - \sqrt{{x}^{2} - 3}}


Novamente você já começou errando o mmc. O correto seria:

\frac{\left(x + \sqrt{3}\right)\left(\sqrt{x} - \sqrt{x-\sqrt{3}}\right) + \left(x - \sqrt{3}\right)\left(\sqrt{x} + \sqrt{x+\sqrt{3}}\right)}{\left(\sqrt{x} + \sqrt{x+\sqrt{3}}\right)\left( \sqrt{x} - \sqrt{x-\sqrt{3}}\right)}= \sqrt{x}

Entretanto, seria mais interessante fazer algumas simplificações ao invés de efetuar a soma das frações no primeiro membro.

Por exemplo, você poderia escrever:

\frac{\left(x + \sqrt{3}\right)\left(\sqrt{x} - \sqrt{x+\sqrt{3}}\right)}{\left(\sqrt{x} + \sqrt{x+\sqrt{3}}\right)\left(\sqrt{x} - \sqrt{x+\sqrt{3}}\right)} + \frac{\left(x - \sqrt{3}\right)\left(\sqrt{x} + \sqrt{x-\sqrt{3}}\right)}{\left(\sqrt{x} - \sqrt{x-\sqrt{3}}\right)\left(\sqrt{x} + \sqrt{x-\sqrt{3}}\right)} = \sqrt{x}

\frac{\left(x + \sqrt{3}\right)\left(\sqrt{x} - \sqrt{x+\sqrt{3}}\right)}{\left(\sqrt{x}\right)^2 - \left(\sqrt{x+\sqrt{3}}\right)^2} + \frac{\left(x - \sqrt{3}\right)\left(\sqrt{x} + \sqrt{x-\sqrt{3}}\right)}{\left(\sqrt{x}\right)^2 - \left(\sqrt{x-\sqrt{3}}\right)^2} = \sqrt{x}

\frac{\left(x + \sqrt{3}\right)\left(\sqrt{x} - \sqrt{x+\sqrt{3}}\right)}{-\sqrt{3}} + \frac{\left(x - \sqrt{3}\right)\left(\sqrt{x} + \sqrt{x-\sqrt{3}}\right)}{\sqrt{3}} = \sqrt{x}

Agora tente terminar.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Equação...

Mensagempor nathyn » Seg Jan 30, 2012 19:15

Aaah brigadão, a primeira eu entendi e consegui encontrar a resposta muito obrigada mesmo. Já a segunda eu não entendi o que foi feito, vc multiplicou em cima e em baica em cada fraçao pela mesma coisa? Pq foi feito isso e quando eu posso usar esse tipo de simplificação?
Desculpa, é que não tenho uma boa base...
d qualquer forma, muito obrigada.
nathyn
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Qua Nov 16, 2011 14:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Equação...

Mensagempor LuizAquino » Seg Jan 30, 2012 23:48

nathyn escreveu:Já a segunda eu não entendi o que foi feito, vc multiplicou em cima e em baica em cada fraçao pela mesma coisa?


Sim, eu multipliquei o numerador e o denominador por uma mesma expressão.

nathyn escreveu:Pq foi feito isso e quando eu posso usar esse tipo de simplificação?


Isso foi feito para simplificar a raiz que havia no denominador.

A ideia é parecida com a que usamos quando queremos racionalizar denominadores.

nathyn escreveu:Desculpa, é que não tenho uma boa base...


Eu recomendo que você assista as vídeo-aulas do Nerckie. Elas estão disponíveis no canal dele no YouTube:

http://www.youtube.com/nerckie
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Equação...

Mensagempor nathyn » Ter Jan 31, 2012 10:42

aah ta, entendi... pq se multiplicar em cima e em baixo pela mesma coisa não altera a fração...
Brigadão e vou dah uma assistida sim.
Muito obrigada. Fica com Deus ;D
nathyn
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Qua Nov 16, 2011 14:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.