• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistemas de equações de 2º Grau

Sistemas de equações de 2º Grau

Mensagempor Walquiria » Dom Nov 13, 2011 23:04

x-y=1
x^2+y^2= 8,5
Sendo x>0 e y>0, a soma x+y vale: Resposta:4
Walquiria
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Dom Abr 03, 2011 11:54
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: formado

Re: Sistemas de equações de 2º Grau

Mensagempor MarceloFantini » Seg Nov 14, 2011 05:20

x-y=1 \implies (x-y)^2 = x^2 -2xy +y^2 = 1^2 \implies -2xy +8,5 = 1 \implies 2xy = 7,5.

Agora, (x+y)^2 = x^2 +2xy +y^2 = 8,5 + 7,5 = 16, e daí x+y=4.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Sistemas de equações de 2º Grau

Mensagempor Walquiria » Seg Nov 14, 2011 10:35

NÃO ENTENDI SUA RESOLUÇÃO????????????????
Walquiria
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Dom Abr 03, 2011 11:54
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Andamento: formado

Re: Sistemas de equações de 2º Grau

Mensagempor MarceloFantini » Seg Nov 14, 2011 18:08

Primeiramente, sabemos que x-y=1. Elevei ambos ao quadrado e usando que x^2 +y^2 =8,5, conclui que 2xy=7,5. Queremos saber o valor de x+y, logo, experimentei calcular o seu valor ao quadrado: (x+y)^2 = x^2 +2xy +y^2. Usando novamente a informação do enunciado e o dado que acabei de encontrar, temos x^2 +2xy +y^2 = x^2 +y^2 +2xy = 8,5 + 7,5 = 16. Então (x+y)^2 = 16, e portanto x+y=4.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.