• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação do 3º Grau

Equação do 3º Grau

Mensagempor DHST » Sáb Nov 12, 2011 13:38

Sou novo no fórum, qualquer erro por favor me avisem.

Caiu uma questão na Unesp 2012 1ª Fase e eu não a soube resolver. A Equação era: x³-3x²-x+K=0, para encontrar o valor do K, pra facilitar, aqui vai a imagem já com a resolução.

Imagem

Meu problema é que eu não consigo entender como encontrar as raízes da equação do 3º Grau, eu observei a resolução e mesmo assim não consegui desvendar, por exemplo, em qualquer equação desse tipo, quando o coeficiente D não foi dado e é pedido para encontrá-lo, de onde veio veio aquele 3 ao qual a equação foi igualada? Tem como resolver ainda mais detalhadamente? Faz alguma diferença a informação de que é uma P.A.? Como o resultado de A=1?. E não tem nessa questão, mais e se pedisse todas as três raízes da equação, como encontrá-las?

Obrigado. Espero que tenha ficado claro e eu voltarei aqui para tentar entender.

Gostei do fórum, parece muito completo!
DHST
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Nov 12, 2011 13:17
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equação do 3º Grau

Mensagempor DHST » Sáb Nov 12, 2011 19:28

Pessoal, eu to me matando pra tentar entender e nada. Eu não entendo como encontrar as raízes. Não entendo como utilizar as Relações de Girard para encontrar o coeficiente D da equação e todas as raízes.

Eu não entendo porque a-r, a, a+r são as raízes da equação, tipo, é sempre assim? uma fórmula pra este tipo de exercício? Existe uma explicação para serem essas as raízes?

Enfim, =(, também não entendo aquela formulinha das relações de girard pra equação do terceiro grau, que é essa aqui abaixo:

Imagem

Me ajudem, por favor. Muito obrigado!
DHST
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Nov 12, 2011 13:17
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Equação do 3º Grau

Mensagempor MarceloFantini » Sáb Nov 12, 2011 23:31

DHST, você não está sabendo relacionar as informações do problema.

Primeiro, o enunciado diz que as raízes formam uma progressão aritmética, logo podemos dizer que as raízes são da forma a-r, a e a+r, onde r é a razão da progressão.

Segundo, as relações de Girard dizem que a soma das raízes é igual a \frac{-b}{a}, onde b é o coeficiente do x^2. Logo,

(a-r)+a+(a+r) = \frac{-b}{a} = 3 \implies 3a = 3 \implies a=1.

Mas a é uma raíz do polinômio, então a^3 -3a^2-a +k = 0, substituindo a=1 teremos 1^3 -3 \cdot 1^2 -1 + k = 0 \implies k=3.

Em tempo: a diferença de tempo entre as suas mensagens foi de 6 horas. Quando pedir por ajuda, espere, somos todos voluntários e não passamos o dia no fórum.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Equação do 3º Grau

Mensagempor DHST » Dom Nov 13, 2011 08:04

Valeu! Entendi tudo agora. E como disse, sou novo aqui, só que a mensagem 2 foi mais uma complementação do que eu não entendia, para que me pudessem ajudar exatamente onde eu precisava, porque eu tinha tentado resolver o exercício entre esse período aí de 6 horas.
DHST
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sáb Nov 12, 2011 13:17
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}